NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

自動駕駛車軟體

Autonomous Vehicle Software

出版商 ABI Research 商品編碼 881180
出版日期 內容資訊 英文 40 Pages
商品交期: 最快1-2個工作天內
價格
如有價格方面的疑問請按下「詢問」鍵來信查詢
自動駕駛車軟體 Autonomous Vehicle Software
出版日期: 2019年07月02日內容資訊: 英文 40 Pages
簡介

本報告提供自動駕駛車軟體市場相關調查,汽車產業採用的人工智能、軟體開發技術分析,開發的技術課題分析,主要的經營模式、方法比較,及主要企業簡介等資訊。

第1章 摘要整理

第2章 自動駕駛堆疊概要

第3章 認識

  • 視覺第一的優勢
  • 使用了卷積神經網 (CNN) 的鑑定
  • 使用了遞歸神經網 (RNN) 的預測
  • 結論

第4章 感測器融合

  • 初期 vs. 後期的感測器融合

第5章 本土化、環境建模

  • 自動駕駛的數位地圖
  • HD地圖相關的利用案例

第6章 運動規劃、控制

  • 多代理商的問題
  • 行動規劃
  • 端到端的深度學習
  • 決定論性的安全性螢幕
  • 複合性的展開方案

第7章 自動駕駛車軟體開發工具

第8章 AV軟體的經營模式

  • 授權/契約經營模式
  • 端到端 vs. 模組化方法

第9章 自動駕駛軟體供應商

  • AImotive
  • Aurora
  • Elektrobit
  • FiveAI
  • Mobileye (An Intel Subsidiary)
  • NVIDIA
  • Zenuity

第10章 市場預測

  • AV軟體許可證
  • 反復的商機
  • 整體市場機會
目錄
Product Code: AN-5159

The development of a robust Autonomous Vehicle software stack is a highly complex engineering task, requiring automakers and their suppliers to develop software that can perceive and comprehend the environment, predict the behavior of dynamic agents within the scene, and execute maneuvers in a way that does not contribute to an unsafe scenario and does not cause the occupant any discomfort.

This report investigates the artificial intelligence and software development techniques being adopted by the automotive industry too meet the challenge, and assess issues such as early vs. late sensor fusion, and how the correct balance of deterministic and trained software can help to address functional safety requirements, and give confidence that no autonomous vehicle will ever be the responsible party in an accident.

As well as considering the technical challenges which remain in autonomous vehicle software development, the report also addresses how this software can be brought to market and monetized, comparing the more flexible and modular approaches of vendors such as AIMotive and NVIDIA with the more integrated, end-to-end approaches of Mobileye and Aurora. Market sizing and forecasting is given for autonomous vehicle software licensing, as well the significant market potential for recurring revenue streams from essential and functional updates to autonomous vehicles over the course of their lifetime.

In a time of market consolidation, with many OEMs rationalizing their spend on autonomous vehicles and with many robotaxi startups beginning to feel the strain, this report can help guide OEMs to autonomous software development partners that can best help meet their autonomous and driverless objectives. At the same time, the report highlights which software development techniques and software tools can help autonomous software developers to secure vital revenue in the short term and position themselves effectively in the nascent autonomous vehicle market.

Companies Mentioned:

  • AIMotive
  • Aurora
  • BMW Group
  • Chrysler LLC
  • CNN
  • Elektrobit
  • FiveAI
  • General Motors Corporation
  • HERE Technologies
  • Hyundai
  • Intel Corporation
  • Mercedes Benz
  • Mobileye
  • NVIDIA
  • OnStar
  • TomTom
  • Veoneer
  • Zenuity

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Introduction
  • 1.2. Artificial Intelligence (AI) Techniques Dominate Perception
  • 1.3. Deterministic Software Development Complements AI
  • 1.4. Software Toold Provide Short-Term Revenue Flow
  • 1.5. Expect Vendor Consolidation during the Coming Years
  • 1.6. End-to-End Stacks Will Triumph over Modular Approaches in the Short Term
  • 1.7. Recurring Revenue Streams

2. OVERVIEW OF THE AUTONOMOUS DRIVING STACK

3. PERCEPTION

  • 3.1. Vision-First Dominance
  • 3.2. Identification Using Convolutional Neural Networks
  • 3.3. Prediction Using Recurrent Neural Networks
  • 3.4. Conclusions

4. SENSOR FUSION

  • 4.1. Early versus Late Sensor Fusion

5. LOCALIZATION AND ENVIRONMENT MODELING

  • 5.1. Digital Maps in Autonomous Driving
  • 5.2. Relevant Use Cases for HD Maps

6. MOTION PLANNING AND CONTROL

  • 6.1. A Multi-Agent Problem
  • 6.2. Behavior Planning
  • 6.3. End-to-End Deep Learning
  • 6.4. Deterministic Safety Monitors
  • 6.5. Mixed Deployment Scenarios

7. AUTONOMOUS VEHICLE SOFTWARE DEVELOPMENT TOOLS

8. AV SOFTWARE BUSINESS MODELS

  • 8.1. Licensing/Subscription Business Model
  • 8.2. End-to-End versus Modular Approaches

9. AUTONOMOUS SOFTWARE VENDORS

  • 9.1. AImotive
  • 9.2. Aurora
  • 9.3. Elektrobit
  • 9.4. FiveAI
  • 9.5. Mobileye (An Intel Subsidiary)
  • 9.6. NVIDIA
  • 9.7. Zenuity

10. MARKET EXPECTATION AND FORECASTS

  • 10.1. AV Software Licenses
  • 10.2. Recurring Revenue Opportunity
  • 10.3. Total Market Opportunity