Cover image
市場調查報告書 - 219337

全球中紅外線感測器市場與奈米技術:市場佔有率與預測(2012-2018年)

Mid Infrared (IR) Sensors Market Shares, Market Strategy, and Market Forecasts, 2013 to 2019: Next generation Mid IR sensors are more robust and less pricey, extending use beyond military applications

出版商 WinterGreen Research, Inc.
出版日期 2011年12月12日 內容資訊 英文 818 Pages
價格
全球中紅外線感測器市場與奈米技術:市場佔有率與預測(2012-2018年) Mid Infrared (IR) Sensors Market Shares, Market Strategy, and Market Forecasts, 2013 to 2019: Next generation Mid IR sensors are more robust and less pricey, extending use beyond military applications
出版日期: 2011年12月12日 內容資訊: 英文 818 Pages
簡介

本報告提供全球中紅外線感測器市場現況與展望調查分析,中紅外線感測器的最終用途產業·應用領域·應用產品/系統,實行技術·應用技術,中紅外線雷射的市場佔有率估計(2011年),出貨量及出貨台數預測(∼2018年),主要產品概要,並彙整主要企業簡介等,為您概述為以下內容。

摘要整理

第1章 市場概要·市場動態

  • 紅外線光譜
  • 中紅外線感測器
  • 中紅外線波長運作的半導體雷射
  • 紅外線半導體雷射
  • 智慧感應器替代昂貴的大廈管理系統
  • 生物醫療·化學領域的中紅外線光譜型感測器
  • 小型中紅外線感測器技術趨勢
  • 中紅外線感測器用途新的領域及預測
  • 溶膠-凝膠法的中紅外線光纖感測器
  • 飲食部門的磁性奈米粒子中紅外線病原菌感測器

第2章 市場市場佔有率與預測

  • 中紅外線雷射感測器系統
  • 中紅外線感測器的市場佔有率
  • 中紅外線感測器的市場預測
  • 中紅外線感測器的市場機會:概要
  • 「Smarter Planet」的市場佔有率與預測
  • 中紅外線感測器的樣品價格
  • 中紅外線感測器各不同地區出貨量

第3章 產品概要

  • FLIR
  • Daylight Solutions
  • SenseAir
  • Sensor Switch擁有的感測器產品
  • Structured Materials Industries
  • Block Engineering的量子級聯雷射產品
  • Sofradir
  • Ekips Technologies
  • JonDeTech AB
  • Micropelt能源採集
  • EnOcean
  • Agiltron
  • Mirthe的中紅外線感測器呼吸分析儀
  • Cascade Technologies
  • Physical Sciences / Maxion
  • VIASPACE Ionfinity
  • Power Technology的量子級聯雷射
  • M Squared的新一代生物醫療雷射
  • Thermo Fischer Scientific / NovaWave Technologies
  • GE的感測器
  • PNNL的電子產品&系統整合
  • HAMAMATSU PHOTONICS
  • AdTech Optics
  • Opto Solutions
  • Sentinel Photonics
  • ILX Lightwave
  • Aerocrine

第4章 技術

  • 紅外線技術概要
  • 中紅外線雷射光譜
  • 地雷的遠隔檢測
  • 熱電堆
  • 奈米粒子分散
  • 中紅外線雷射的窄波發射
  • IBM的顯微鏡:現行的核磁共振攝影的100倍以上的解析度
  • 中紅外線感測器的電池技術
  • 呼吸分析儀的疾病檢測
  • 醫療用移植的生醫材料的改良
  • QC技術
  • 中紅外線追蹤氣體感測器的概略圖
  • 中紅外線感測器規格
  • 建築自動化的推動因素
  • 近紅外線夜視鏡感測器
  • 中紅外線的非侵入性醫療系統
  • University of Oklahoma的高科技呼吸檢測
  • 物理氣相澱積的奈米粒子的合成
  • MIRTHE發展藍圖

第5章 企業簡介(42間公司)

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Intelligent decision making depends on automated process and information gathered from sensors. The 2011 study has 717 pages, 136 tables and figures. Mid Infrared (IR) Sensors are evolving in the context of the development of solid state technology that provides vast improvements. Improvements in energy density are one of the benefits of energy harvesting give to traditional rechargeable and solid state batteries and sensors become much more useful in this context. The ability to locate self-sufficient sensors out in the field without replacing batteries is a significant market development. Lower cost and size of the mid IR sensors is another market aspect

Mid-infrared (MIR) optical chemical sensor technology in the spectral range of 3-12m is gaining importance in process monitoring, environmental analysis, security/surveillance applications, and the biomedical field. Design approaches for digitally dominated active pixel sensors: leveraging Moore's Law scaling in focal plane readout design. CMOS technology scaling has provided tremendous power and circuit density benefits for innumerable applications, focal plane array (FPA) readouts have largely been left behind.

Design and modeling of nanophotonic beam structures as optical NEMS sensors. Silicon photonic crystal (PhC) waveguide based resonator is designed by introducing a micro-cavity within the line defect. Silicon photonic crystals form the resonant band gap structure for PhC.

Mid IR sensors can measure chemical composition of materials and gas in a manner that is unmatched by any other technology, for a cost that is increasingly more competitive. Mid IR is being readied for use beyond military applications to commercial systems, including wireless network systems.

Advances in QC laser technology and spectrometer hardware are combined with spectroscopic techniques. Intra pulse spectroscopy and similar techniques provide a major step change in sensitivity, speed of operation, fingerprinting capability, size and cost. They offer a major improvement on methods of gas detection.

Recent advances in spectrometer hardware relate to QC gas sensors which exploit recent technological advances including miniaturized integrated electronic systems, plug and play interfaces and micro optics. These will progressively replace the unwieldy, fragile and expensive instrumentation of the past.

The lasing wavelength for QCL's is determined by the choice of semiconductor material as with conventional lasers. By adjusting the physical thickness of the semiconductor layers new functionality is achieved. This removes the material barriers associated with conventional semiconductor laser technology. It opens the possibility of near-infrared through to THz spectral coverage.

An infrared spectroscopic laser source has no need for cryogenic cooling, provides high output powers, has large spectral coverage, provides excellent spectral quality, and has good tuneability.

The removal of the noise floor, without the need of complex fringe removal techniques or expensive optical isolators, enables the laboratory performance of this technology to be transferred to real world applications.

Mid-infrared (IR) laser sensors are able to measure change in device condition, chemistry, or temperature. The ability to measure change remotely, at an affordable price, is part of the emerging smarter planet initiative based on smart sensors. The coincident elaboration of the Internet availability leverages wireless devices. Worldwide demand is creating needs for remote connectivity to sensing devices.

Infrared is a portion of the electro-magnetic spectrum that is not visible by the human eye because its wavelength is too long. Unlike visible light, infrared radiation (or heat) is emitted directly by all objects above absolute zero in temperature. The mid IR spectrum goes from 3-12 m.

Homeland security, military communications, infrared countermeasures, chemical warfare agent detection, explosives detection, medical diagnostics, industrial process controls, remote gas leak detection, pollution monitoring, and real-time combustion controls are uses for the mid IR sensors.

Military applications account for a significant portion of mid IR sensor markets in the first three quarters of 2011. The remaining part of revenue came from CO2 building sensors and units for a number of different markets. Markets are anticipated to grow as costs decrease from $5000 per unit to $200 and even to $1 or less per unit for some new technology. Prices will decline on average. The decrease in size of units from bench size devices to portable units makes them more useful across the board in every industry.

Mid Infrared (IR) sensors markets at $509 million market worldwide in 2011 is anticipated to increase tenfold to $5 billion by 2018. This strong growth is anticipated to come as units are less expensive and more effective in the same amount of space. Wireless sensor networks are useful almost everywhere, creating the opportunity to implement controls and mange every aspect of human activity in ways that have not even been imagined hitherto.

Table of Contents

Mid IR Sensors Executive Summary

  • Mid-Infrared (IR) Laser Sensor Systems
    • Mid-Infrared (IR) Laser Sensors Are Able To
    • Measure Change In Device Condition, Chemistry, Or Temperature
    • Turnkey Mid-Infrared Laser Sensor Systems Are Based On Technology That Goes From 3-12 m
    • Mid IR Sensor Market Driving Forces
  • Mid IR Sensor Market Shares
  • Mid IR Sensor Market Forecasts

1. Mid IR Sensor Market Description and Market Dynamics

  • 1.1. Infrared Spectroscopy
    • 1.1.1. FTIR Spectroscopy Used To Establish Purity Of Chemical Compounds
    • 1.1.2. Applications of Infrared Sensing Thermopiles
    • 1.1.3. Preventive and Predictive Maintenance
    • 1.1.4. Residential Control Systems
    • 1.1.5. White Goods (Home Appliances)
    • 1.1.6. Medical and Health
    • 1.1.7. Industrial Process Control
    • 1.1.8. Security and Surveillance
    • 1.1.9. Mid-Infrared Sensor Applications Discussion
    • 1.1.10. IBM Integrated Product Change Management
  • 1.2. Mid IR Sensors
    • 1.2.1. Positioned To Provide Wavelength Tunability And High Optical Power
    • 1.2.2. ECqcL Expressed As A QC Semiconductor Chip
    • 1.2.3. Advances Of Mid-Infrared Based Trace Gas Sensor
  • 1.3. Semiconductor Diode Lasers Operating At Midwave-Infrared (Mid-IR) Wavelengths
  • 1.4. Infrared Semiconductor Lasers
    • 1.4.1. Test Applications For Mid IR Sensors
  • 1.5. Smart Sensors Replace Expensive Building Control Systems
    • 1.5.1. Building Control Standardization
  • 1.6. Biomedical And Chemical Mid-IR Spr Based Sensor
    • 1.6.1. Development Of Mid-Infrared Surface Plasmon
    • 1.6.2. Sensors Utilizing Surface Plasmon Resonance (SPR)
  • 1.7. Miniaturized Mid-Infrared Sensor Technologies Trends
    • 1.7.1. Mid IR Waveguides
    • 1.7.2. Miniaturized IR Gas Sensors
  • 1.8. Emerging New Fields of Mid IR Sensor Application And Outlook
  • 1.9. Sol-Gel-Coated Mid-Infrared Fiber-Optic Sensors
  • 1.10. Magnetic Nanoparticle Mid-Infrared Pathogen Sensor for Food Matrixes

2. Mid IR Sensors Market Shares and Market Forecasts

  • 2.1. Mid-Infrared (IR) Laser Sensor Systems
    • 2.1.1. Mid-Infrared (IR) Laser Sensors Are Able To Measure Change In Device Condition, Chemistry, Or Temperature
    • 2.1.2. Turnkey Mid-Infrared Laser Sensor Systems Are Based On Technology That Goes From 3-12 m
    • 2.1.3. Mid IR Sensor Market Driving Forces
  • 2.2. Mid IR Sensor Market Shares
    • 2.2.1. FLIR Systems Multi-Sensor Mission Equipment
    • 2.2.2. FLIR Mid IR Sensors
    • 2.2.3. FLIR Building Inspection
    • 2.2.4. FLIR Infrared Detector Design Manufacturing
    • 2.2.5. FLIR Sensing Materials
    • 2.2.6. SenseAir
    • 2.2.7. SenseAir Carbon Dioxide Sensors
    • 2.2.8. Senseair Test & Measurement Carbon Dioxide Sensors
    • 2.2.9. SenseAir(Non-dispersive Infra-Red) Technology
    • 2.2.10. Structured Materials Industries
    • 2.2.11. Daylight Solutions FTIR Spectroscopy
    • 2.2.12. Daylight Solutions Broadly Tunable, Room-Temperature, Mid-IR Laser
    • 2.2.13. Sofradir
    • 2.2.14. Sofradir
    • 2.2.15. Sofradir
    • 2.2.16. JonDeTech
    • 2.2.17. Maxion Technologies
    • 2.2.18. Thermo Fischer Scientific / NovaWave Technologies
    • 2.2.19. Thermo Fischer Scientific / NovaWave
    • 2.2.20. Power Technology Quantum-Cascade Mid IR Lasers
    • 2.2.21. Agiltron
    • 2.2.22. Aerocrine
    • 2.2.23. Bosch
    • 2.2.24. Block Engineering
    • 2.2.25. II-VI Incorporated (NASDAQ: IIVI)
    • 2.2.26. MIRTHE Center
    • 2.2.27. Infrared Fiber Systems Infrared Transmitting Fibers Medical Market
    • 2.2.28. M Squared Next-Generation Bio-Medical Lasers Firefly-IR
    • 2.2.29. Raytheon and Lockheed Market For Mid-Infrared Lasers
    • 2.2.30. Market Consolidatioon of Mid IR Sensor Companies
    • 2.3. Mid IR Sensor Market Forecasts
    • 2.3.1. Military / Airline / Space / Defense Mid Infrared (IR) Sensors Market Forecasts
    • 2.3.2. Smart Building Mid Infrared (IR) Sensor Markets
    • 2.3.3. FLIR Building Inspection
    • 2.3.4. Mid IR sensors Smart Grid and Smart Building Market Forecasts
    • 2.3.5. Sensors and Automation
    • 2.3.6. Applications and Benefits
    • 2.3.7. MID IR Sensor Analysis
    • 2.3.8. Military Mid IR Sensor Market Forecasts
    • 2.3.9. Homeland Security Mid IR Sensors
    • 2.3.10. Law Enforcement Mid IR Sensor Market Forecasts,
    • 2.3.11. Smart Electrical Grid Moves to Electronics and Sensors from Purely Mechanical Infrastructure
    • 2.3.12. Carbon Dioxide Gas Sensing
    • 2.3.13. Smart Grid Networking
    • 2.3.14. Healthcare Mid IR Sensor Breath Analysis Market Forecasts
    • 2.3.15. Mid Infrared IR Sensor Technologies Basis For IR Sensing
    • 2.3.16. Nanoparticles The Base For Mid IR Sensor Evolution
    • 2.3.17. Miniaturization Significant For The Development Of Mid IR Applications
    • 2.4. Mid IR Sensor Market Opportunity Overview
    • 2.4.1. Molecular Responses Across the MIR Spectrum
    • 2.4.2. Technology Options Available in Mid IR
    • 2.4.3. Diagrams To Illustrate The Technologies
    • 2.4.4. Comparison of Technology Options
    • 2.4.5. Products, In Which MIR Sensors Are Actually Deployed
    • 2.4.6. Market Trends & Key Companies
    • 2.4.7. Key Applications/Products Used By The Military
    • 2.4.8. Potential Technologies and Applications of MIR Sensors
    • 2.4.9. Key Developments Are Required To Make The Potential Applications Into Real Markets
    • 2.4.10. Market Segment Analysis
    • 2.4.11. Characteristics Required
    • 2.4.12. Building a Robust Data Sensor Network Integration Layer
  • 2.5. Smarter Planet Market Shares and Forecasts
    • 2.5.1. IBM Imperatives For A Smarter Planet
    • 2.5.2. IBM Positions To Support Sensor Networks
    • 2.5.3. IBM Jazz.net
    • 2.5.4. Smarter Planet Market Forecasts
    • 2.5.5. Smarter Planet Software Market Industry Segment Forecasts
    • 2.5.6. Smarter Planet Market Segment Forecasts
    • 2.5.7. Link Between SOA and MIR sensors
    • 2.5.8. SOA Used to Connect Mid IR Sensor Information to Analytical Software
    • 2.5.9. Services Oriented Architecture (SOA) Market Driving Forces
    • 2.5.1. Advantages Offered By SOA
    • 2.5.2. Services Oriented Architecture SOA Market Shares
    • 2.5.3. IBM SOA Dominates the Industry
    • 2.5.4. Building a Robust Data Sensor Network Integration Layer
    • 2.5.5. SOA Network Sensor Market Segment
    • 2.5.6. Mid IR Sensor Enabled Device Market Driving Forces
    • 2.5.7. SOA Market Shares
  • 2.6. Mid IR Sensor Sample Prices
    • 2.6.1. SenseAirR NDIR (Non-dispersive Infra-Red) Technology
    • 2.6.2. MIRTHE Prototype QC Laser Based Sensors
    • 2.6.3. JonDeTech
    • 2.6.4. Aerocrine
  • 2.7. Mid IR Sensor Regional Shipments

3. Mid IR Sensors Product Description

  • 3.1. FLIR
    • 3.1.1. FLIR Building Inspection
    • 3.1.2. FLIR Gas Detection
    • 3.1.3. FLIR Emerging Markets
    • 3.1.4. FLIR Technology
    • 3.1.5. FLIR System Design and Integration
    • 3.1.6. FLIR Sensing Materials
    • 3.1.7. FLIR Lasers and Laser Components
    • 3.1.8. FLIR Tactical Platforms
    • 3.1.9. FLIR Tau Outputs NTSC Video
    • 3.1.10. FLIR Mid IR Sensors
    • 3.1.11. FLIR Government Systems Airborne MEP
    • 3.1.12. FLIR Government Systems Airborne - Talon
    • 3.1.13. FLIR Government Systems Unmanned - Star SAFIRE QWIP
    • 3.1.14. FLIR Government Systems Unmanned - Star SAFIRE III
    • 3.1.15. FLIR Government Systems Unmanned TacFLIR II
    • 3.1.16. FLIR Government Systems - Products - Maritime - Star SAFIRE III
    • 3.1.17. FLIR Government Systems - Products - Maritime - SeaFLIR II
    • 3.1.18. FLIR Government Systems - Products - Land - RWSS
    • 3.1.19. FLIR Government Systems - Products - Land - WideEye II
    • 3.1.20. FLIR Government Systems Force Protection
    • 3.1.21. FLIR EO/IR
  • 3.2. Daylight Solutions
    • 3.2.1. Daylight Solutions Lasers For Gas Sensing Instrumentation
    • 3.2.2. Daylight Solutions Mid-IR HgCdTe Detectors
    • 3.2.3. Daylight Solutions Thermal Laser Pointers
    • 3.2.4. Daylight Solutions Tunable Laser
    • 3.2.5. Daylight Solutions Broadly Tunable, Room-Temperature, Mid-IR Laser
    • 3.2.6. Daylight Solutions Mid-IR
    • 3.2.7. Daylight Solutions Fixed Wavelength Pulsed and CW Mid-Infrared Lasers
    • 3.2.8. Daylight Solutions Mid-IR HgCdTe Detectors
    • 3.2.9. Daylight Solutions Room-Temperature, Low-Noise Amplified MCT Detector Core Technology
    • 3.2.10. Daylight Solutions Digital Object Identifier
    • 3.2.11. Power Technology Applications
    • 3.2.12. Daylight Solutions Power Technology Sensors Integrated With Wireless Capability
    • 3.2.13. Daylight Solutions Power Technology ECqcL Used For Illumination Applications
  • 3.3. SenseAir
    • 3.3.1. Senseair Carbon Dioxide
    • 3.3.2. Senseair Test & Measurement Carbon Dioxide Sensors
    • 3.3.3. Senseair Temperature Proportional To Carbon Dioxide Level
    • 3.3.4. SenseAir Collaborates With Ventilation Systems Suppliers
    • 3.3.5. SenseAir Measurement Platform Has Intelligence
    • 3.3.6. SenseAir Carbon Dioxide Sensors
    • 3.3.7. SenseAir has Collaborated With Autoliv Development and Hok Instrument in Developing The Next Generation Of Driver Alcohol Detection Systems
  • 3.4. Sensor Switch Occupancy Sensor Products
    • 3.4.1. Sensor Switch Technology Engineering Driven Company
    • 3.4.2. Sensor Switch Passive Infrared
  • 3.5. Structured Materials Industries
    • 3.5.1. Structured Materials Industries SpinCVDJ Metal Organic Chemical Vapor Deposition
  • 3.6. Block Engineering Quantum Cascade Laser Products
    • 3.6.1. Block Engineering Quantum Cascade Laser (QCL) LaserScan™
    • 3.6.2. Block Engineering Quantum Cascade Laser (QCL) LaserScope™
  • 3.7. Sofradir
    • 3.7.1. Sofradir EPSILON MW
    • 3.7.2. Sofradir ROIC Modes:
  • 3.8. Ekips Technologies
    • 3.8.1. Ekips Technologies Breathmeter
    • 3.8.2. Ekips Technologies Lasers
    • 3.8.3. Ekips Technologies Laser Spectrometers
    • 3.8.4. Ekips Technologies Mid-Infrared Lasers
    • 3.8.5. Ekips Technologies Challenge In Quantifying Chemical Molecules
  • 3.9. JonDeTech AB
    • 3.9.1. JonDeTech AB Applications of Infrared Sensing Thermopiles
    • 3.9.2. JonDeTech AB Preventive and Predictive Maintenance
    • 3.9.3. JonDeTech Thermopile Products
    • 3.9.4. JonDeTech Surface Mount Plastic Thermopiles
    • 3.9.5. JonDeTech Thermopiles
    • 3.9.6. JonDeTech Horizontal Thermocouple
    • 3.9.7. JonDeTech Advantage Of Nanotechnology Vertical Thermocouple
  • 3.10. Micropelt Energy Harvesting:
    • 3.10.1. Micropelt Two Micro Thermogenerators In Series
    • 3.10.2. Micropelt Thermoharvester
  • 3.11. EnOcean
    • 3.11.1. EnOcean ECT 310 - Thermo Energy Harvesting
    • 3.11.2. EnOcean Energy Harvesting Wireless Sensor Solutions
  • 3.12. Agiltron
    • 3.12.1. Agiltron Infrared Detector Products
    • 3.12.2. Agiltron Lead Sulfide Infrared Detector Array
    • 3.12.3. Agiltron Lead Selenide Infrared Detectors
    • 3.12.4. Agiltron Lead Selenide Infrared (Pbse) Detector Array
  • 3.13. Mirthe Mid IR Sensor Breath Analyzers
    • 3.13.1. Mirthe Engineered Systems for Mid-IR Laser Absorption Spectroscopy
    • 3.13.2. Mirthe Strategic 3-Level Framework
  • 3.14. Cascade Technologies
    • 3.14.1. Cascade Technologies CT2100 - OnStack Multigas Analyser
    • 3.14.2. Cascade Technologies CT3400 - Extractive Multigas Analyser
    • 3.14.3. Cascade Technologies Revolutionary Technology
    • 3.14.4. Cascade Technology Implementation
  • 3.15. Physical Sciences / Maxion
    • 3.15.1. Maxion Technologies Infrared Semiconductor Lasers
    • 3.15.2. Maxion Technologies Turn-Key Mid-IR Laser Systems
    • 3.15.3. Maxion Technologies Turn-Key Mid-IR Laser Quantum Cascade (QC) and Interband Cascade (IC) Sensors
    • 3.15.4. Maxion Distributed Feedback (DFB) Single-Mode and Fabry-Perot (FP) Multi-Mode Lasers
    • 3.15.5. Maxion C-Mount and NS-Mount Lasers
  • 3.16. VIASPACE Ionfinity
    • 3.16.1. VIASPACE Ionfinity Soft Ionization Membrane
  • 3.17. Power Technology Quantum-Cascade Lasers
    • 3.17.1. Power Technology Quantum-Cascade Lasers Blue, Violet, & UV Diode Lasers
    • 3.17.2. Power Technology Infrared Viewing Devices
    • 3.17.3. Power Technology Laser Modules for OEM
  • 3.18. M Squared Next-Generation Bio-Medical Lasers
    • 3.18.1. M Squared Lasers Firefly-IR
    • 3.18.2. M Squared Lasers Firefly-THz
    • 3.18.3. M Squared Firefly-THz: Compact, Widely Tunable, Pulsed Terahertz Laser Source
    • 3.18.4. M Squared Lasers Product Families
    • 3.18.5. M Squared ICE-BLOC® Photonic Controllers
    • 3.18.6. M Squared Laser Systems
    • 3.18.7. M Squared Dependable Innovation
    • 3.18.8. M Squared SolsTiS™: Ultracompact, Widely Tunable, Narrow Linewidth CW Ti:Sapphire Laser
  • 3.19. Thermo Fischer Scientific / NovaWave Technologies
    • 3.19.1. NASA Applications For Compact UV Laser- Based Sensor Instrument
    • 3.19.2. Novawave Technology Mid-Infrared Laser Source Real-time, Multispecies Greenhouse Gas Sensor
    • 3.19.3. Novawave Technology Canary in a Beam Line
    • 3.19.4. Novawave Technology Quasi-Phase-Matched DFG Lasers for Sensing
  • 3.20. GE Sensors
    • 3.20.1. GE Wireless Sensor Networks
    • 3.20.2. GE Applications for Wireless Sensor Networks
  • 3.21. PNNL Electronics and Systems Integration
  • 3.22. Hamamatsu
    • 3.22.1. Hamamatsu Infrared Detector
    • 3.22.2. Hamamatsu QCL for Continuous Wave Operation At Room Temperature
    • 3.22.3. Hamamatsu Laser
  • 3.23. AdTech Optics
  • 3.24. Opto Solutions
    • 3.24.1. Opto Solutions - IR Photonics
  • 3.25. Sentinel Photonics
  • 3.26. ILX Lightwave
  • 3.27. Aerocrine

4. Mid IR Sensor Technology

  • 4.1. Infrared Technology Overview
    • 4.1.1. Daylight Solutions Core Technology
  • 4.2. Mid-infrared (mid-IR) Laser Spectroscopy
    • 4.2.1. Application of Infrared Lasers to Nanosecond Time-Resolved Condensed-Phase Samples
  • 4.3. Remote Detection Of Mines
  • 4.4. Thermopiles
    • 4.4.1. JonDeTech: Vertical VS. Horizontal Thermopile Lead Configuration
  • 4.5. Nanoparticle Dispersions
    • 4.5.1. Aqueous Dispersions
    • 4.5.2. JonDeTechs Thermopiles Based On Nanotechnology
    • 4.5.3. Nanotechnolgy Particle Size In The Range Of 1-100 Nanometers
    • 4.5.4. Nanoparticles
    • 4.5.5. Silicon In A Battery Swells As It Absorbs Lithium Atoms
    • 4.5.6. Different Shapes Of The Same Material Create Different Characteristics
    • 4.5.7. Optical Properties Integrated Into New Mid IR Sensor Technology
  • 4.6. Mid IR Laser Laser Emits A Narrow Range Of Wavelengths
    • 4.6.1. Interband Cascade Laser (ICL) Based Spectroscopic Trace-Gas Sensor Provides For Simultaneous Detection Of Two Atmospheric Trace Gases
    • 4.6.2. Narrow Band Gap Semiconductor Laser Diodes
  • 4.7. IBM Microscope 100 Million Times Finer Resolution Than Current MRI
    • 4.7.1. IBM Research
    • 4.7.2. Technological Trends in Microscopy
  • 4.8. Battery Technology for Mid IR Sensors
    • 4.8.1. Battery Chemistries Technology
  • 4.9. Breath Analyzers Detect Disease
  • 4.10. Improving Biomaterials For Medical Implant Applications
    • 4.10.1. Bioactive Materials
    • 4.10.2. Forming A Chemical Bond With Bone
    • 4.10.3. Bioactivity Increased Through Surface Modification
    • 4.10.4. Biofilms Multilayered Colonies Of Bacteria
    • 4.10.5. Biofilm Formation
    • 4.10.6. Biofilms As A Major Contributor To Chronic Wounds
    • 4.10.7. Acute or Chronic Infection in Some Biomaterial Applications
    • 4.10.8. Biomaterials Research
  • 4.11. QC Technology
    • 4.11.1. Components of an ECqcL
  • 4.12. Schematic of Mid-Infrared Trace Gas Sensor
  • 4.13. Mid-IR Sensors Standards
  • 4.14. Driving Forces For Building Automation
  • 4.15. Near IR Night Vision Sensors
    • 4.15.1. Sensor Based Threat Detection
  • 4.16. Mid-IR Non-Invasive Medical Systems
  • 4.17. University of Oklahoma High-Tech Breath Test
    • 4.17.1. Nanotechnology Improves Laser Performance
    • 4.17.2. Nanotechnology Breath Analyzer For Kidney Failure
  • 4.18. Physical Vapor Nanoparticle Synthesis
    • 4.18.1. Nanophase Vapor Development Process
    • 4.18.2. Nanoparticle Coatings - Discrete Particle Encapsulation
    • 4.18.3. Nanoparticle Vapor Organic Dispersions
  • 4.19. MIRTHE Roadmap
    • 4.19.1. Near IR Laser Sensors:

5. Mid Infrared (IR) Sensors Company Profiles

  • 5.1. AdTechoptics
  • 5.2. Aerocrine
  • 5.3. Alpes Lasers / ALTechnologies
    • 5.3.1. Laser diodes
  • 5.4. Block Engineering
    • 5.4.1. Block Positioned To Expand Its Commercial Markets
    • 5.4.2. Block Engineering Contracts
    • 5.4.3. Block Engineering LaserScan™ Analyzer
    • 5.4.4. Block Engineering: Developer Of High Performance QCL and FT-IR Spectrometers
    • 5.4.5. Block MEMS Receives $4.5 Million Development Contract for MEMS Gas Sensor
  • 5.5. Bosch
    • 5.5.1. Bosch Building Automation
    • 5.5.2. Bosch Carbon Dioxide Ventilation IR Sensors
    • 5.5.3. Bosch Motion Detectors
    • 5.5.4. Bosch Smart Sensors Simplify
  • 5.6. Cymbet
    • 5.6.1. Cymbet Team:
    • 5.6.2. Cymbet Investors:
    • 5.6.3. Cymbet Partners, Sales and Distribution:
    • 5.6.4. Cymbet Manufacturing:
    • 5.6.5. Cymbet to Open World's Highest Volume Solid-State Battery Manufacturing Facility
    • 5.6.6. Cymbet Partnering with X-FAB
    • 5.6.7. Cymbet / X-FAB, Inc.
    • 5.6.8. Cymbet Expanding in Minnesota
    • 5.6.9. Cymbet / LEDA
    • 5.6.10. Distribution Agreement EnerChip™ Eco-friendly Solid State Batteries
    • 5.6.11. Cymbet EVAL-09 Utilizes Harnessing Ambient Energy
    • 5.6.12. Cymbet Secures $31 Million in Private Financing
  • 5.7. Daylight Solutions
    • 5.7.1. $15Million Equity for Daylight Includes Northrop Grumman Funds
    • 5.7.2. Daylight Solutions Manufacturing Expansion
    • 5.7.3. Daylight Solutions Collaborations
  • 5.8. Digi International
    • 5.8.1. Digi International Revenue
    • 5.8.2. Digi International Business Highlights:
  • 5.9. Directed Vapor Technology
    • 5.9.1. Directed Vapor Deposition Next Generation Coating Technology
  • 5.10. Dust Networks
    • 5.10.1. Dust Networks Self-Powered IPV6 Wireless Sensor Network
  • 5.11. EnOcean GmbH
    • 5.11.1. EnOcean Technology
  • 5.12. Ekips Technologies
  • 5.13. Elliot Scientific
  • 5.14. Finmeccanica
    • 5.14.1. Finmeccanica / SELEX Galileo
    • 5.14.2. SELEX Galileo Inc.
    • 5.14.3. SELEX Galileo Technologies
  • 5.15. Ferro Solutions
    • 5.15.1. Ferro Solutions
  • 5.16. Flexible Electronics Concepts
  • 5.17. FLIR
    • 5.17.1. FLIR Training
    • 5.17.2. FLIR Sales and Distribution
    • 5.17.3. FLIR Sensor Systems
    • 5.17.4. FLIR Systems Thermography Products
    • 5.17.5. FLIR Systems Infrared Technology
    • 5.17.6. FLIR Systems
    • 5.17.7. FLIR Systems
    • 5.17.8. FLIR Systems Third Quarter 2011 Financial Results
    • 5.17.9. FLIR Systems
    • 5.17.10. FLIR Systems, INC. Revenue
    • 5.17.11. FLIR Systems Segment Operating Results
    • 5.17.12. FLIR Systems Thermal Vision and Measurement
    • 5.17.13. FLIR Systems Raymarine
    • 5.17.14. FLIR Systems Surveillance
    • 5.17.15. FLIR Systems Detection Revenue
    • 5.17.16. FLIR Systems Integrated Systems Revenue
    • 5.17.17. FLIR Systems Competitive Strengths
    • 5.17.18. FLIR Systems Commercial Operating Model
    • 5.17.19. FLIR Systems Vertically Integrated Manufacturing
    • 5.17.20. FLIR Systems Industry-Leading Market Position
    • 5.17.21. FLIR Systems Broad Product Line
    • 5.17.22. FLIR Systems Internally-Funded Innovation
    • 5.17.23. FLIR Systems Diverse Customer Base
    • 5.17.24. FLIR Systems Global Distribution Capabilities
    • 5.17.25. FLIR Systems Growth Strategies
    • 5.17.26. FLIR Systems Continually Reduces Costs
    • 5.17.27. FLIR Systems Expands Global Reach
    • 5.17.28. FLIR Systems Builds Application Awareness and Brand
    • 5.17.29. FLIR Systems Complement Core Competencies with Strategic Acquisitions
    • 5.17.30. FLIR Acquires Aerius Photonics, LLC
    • 5.17.31. FLIR Radiometry
    • 5.17.32. FLIR Predictive Maintenance
    • 5.17.33. FLIR Research & Development Applications
    • 5.17.34. FLIR Manufacturing Process Control
    • 5.17.35. FLIR Mechanical Engineering
    • 5.17.36. FLIR Infrared Detector Design Manufacturing
    • 5.17.37. FLIR Integrated Circuits and Electronic Design
    • 5.17.38. FLIR Software Development
    • 5.17.39. FLIR Motion Control Systems
    • 5.17.40. FLIR Optical Design, Fabrication and Coating
    • 5.17.41. FLIR Micro-Coolers
  • 5.18. GE Sensors
    • 5.18.1. GE Wireless Sensor Networks
    • 5.18.2. GE Applications for Wireless Sensor Networks
  • 5.19. Hamamatsu
    • 5.19.1. Hamamatsu Electron Tube Division
    • 5.19.2. Hamamatsu Solid State Division
    • 5.19.3. Hamamatsu Systems Division
    • 5.19.4. Hamamatsu Laser Group
    • 5.19.5. Hamamatsu Optical Communication Group
    • 5.19.6. Hamamatsu Central Research Laboratory
    • 5.19.7. Hamamatsu Tsukuba Research Laboratory
    • 5.19.8. Hamamatsu Sports Photonics Laboratory
    • 5.19.9. Hamamatsu PET Center
    • 5.19.10. Hamamatsu Revenue
  • 5.20. II-VI. incorporated / Marlow Industries
    • 5.20.1. II-VI. Incorporated (NASDAQ: IIVI)
    • 5.20.2. II-VI. Revenue
    • 5.20.3. II-VI. / Aegis Lightwave
    • 5.20.4. II-VI. Incorporated / Marlow Infrared And Near-Infrared Laser Optical Elements
    • 5.20.5. II-VI. incorporated / Marlow Production Operations
    • 5.20.6. II-VI. incorporated / Marlow Primary Products
    • 5.20.7. II-VI. incorporated / Marlow Markets
    • 5.20.8. II-VI. Infrared Optics Market
    • 5.20.9. II-VI. One-Micron Laser Market.
    • 5.20.10. II-VI. Near-Infrared Optics Market.
    • 5.20.11. II-VI. Thermoelectric Market
  • 5.21. ILX Lightwave
    • 5.21.1. ILX Lightwave Product Innovation
  • 5.22. IPG Photonics
    • 5.22.1. IPG Photonics Revenue
  • 5.23. Johnson Controls Sensor Products
    • 5.23.1. Johnson Controls Valve Products
  • 5.24. JonDeTech
  • 5.25. Kidde Products Limited / Airsense Technology
  • 5.26. Lockheed-Martin
    • 5.26.1. Lockheed Martin Corp
    • 5.26.2. Lockheed Martin Customer Base:
    • 5.26.3. Lockheed Martin Organization:
    • 5.26.4. Lockheed Martin Financial Performance:
    • 5.26.5. Lockheed Martin Receives $260 Million M-TADS/PNVS Production Contract
    • 5.26.6. Lockheed Martin F-35 Electro-Optical Targeting System
    • 5.26.7. Lockheed Martin
    • 5.26.8. Lockheed Martin Defense Department Positioning
    • 5.26.9. US Navy awards Lockheed Martin contract to Pioneer Technology To Efficiently Manage Groups Of Unmanned Vehicles
  • 5.27. M Squared
    • 5.27.1. M Squared Next-Generation Bio-Medical Lasers
    • 5.27.2. M Squared Lasers Firefly-IR
    • 5.27.3. M Squared Lasers Firefly-THz
    • 5.27.4. M Squared Firefly-THz: Compact, Widely Tunable, Pulsed Terahertz Laser Source
    • 5.27.5. M Squared Lasers Product Families
    • 5.27.6 M Squared ICE-BLOC® Photonic Controllers
    • 5.27.7. M Squared Laser Systems
    • 5.27.8. M Squared Dependable Innovation
    • 5.27.9. M Squared SolsTiS™: Ultracompact, Widely Tunable, Narrow Linewidth CW Ti:Sapphire Laser
  • 5.28. MIRTHE (Mid-Infrared Technologies for Health and the Environment) National Science Foundation Engineering Research Center
  • 5.29. Mirthe Mid IR Sensor Breath Analyzers
    • 5.29.1. Mirthe Engineered Systems for Mid-IR Laser Absorption Spectroscopy
    • 5.29.2. Mirthe Strategic 5-Level Framework
  • 5.30. Nanophase Technologies
    • 5.30.1. Nanomaterials Technology Energy
    • 5.30.2. Nanomaterials Technology Aluminum Oxide
    • 5.30.3. Nanomaterials Technology
    • 5.30.4. Nanomaterials Technology Third Quarter 2011 Financial Results
  • 5.31. Opto Solutions
  • 5.32. Physical Sciences Inc. / Maxion Technologies
    • 5.32.1. Maxion Technologies
    • 5.32.2. Maxion and the University of Maryland, Baltimore County
  • 5.33. PNNL Electronics and Systems Integration
  • 5.34. Power Technology
  • 5.35. Raytheon
    • 5.35.1. Raytheon Innovation
    • 5.35.2. Raytheon Integrated Defense Systems (IDS)
    • 5.35.3. Raytheon Intelligence and Information Systems (IIS)
    • 5.35.4. Raytheon Network Centric Systems (NCS)
    • 5.35.5. Raytheon Technical Services Company (RTSC)
    • 5.35.6. Raytheon Missile Systems (RMS)
    • 5.35.7. Raytheon Space and Airborne Systems (SAS)
  • 5.36. SenseAir
  • 5.37. Sensor Switch
  • 5.38. Sentinel Photonics
  • 5.39. Sofradir
    • 5.39.1. Sofradir: Leader in cooled and uncooled IR detectors
    • 5.39.2. Sofradir Subsidiary ULIS SAS
    • 5.39.3. Sofradir / Electrophysics
    • 5.39.4. Sofradir Infrared Company
    • 5.39.5. Sofradir awarded multi-million Euro MUSIS/CSO Infrared contract
  • 5.40. Structured Materials Industries
    • 5.40.1. Structured Materials SMI Products
    • 5.40.2. Structured Materials SMI Customer Advantage
  • 5.41. Thermo Fischer Scientific / NovaWave Technologies
    • 5.41.1. Thermo Fisher Scientific Revenue
    • 5.41.2. Thermo Fisher Scientific Acquired Laser-Based Gas Detection Company NovaWave Technologies
    • 5.41.3. NovaWave Selected for CPP Participation
    • 5.41.4. Thermo Fischer Scientific / NovaWave Technologies
  • 5.42. VIASPACE / Ionfinity
    • 5.42.1. VIASPACE / Ionfinity Product Focus
    • 5.42.2. VIASPACE / Ionfinity Next-Generation Chemical Analysis

List of Tables and Figures

Mid Infrared (IR) Sensor Executive Summary

  • Table ES-1: Mid IR Sensor Market Driving Forces
  • Table ES-2: Technologies Impacting Mid IR Sensor Market
  • Figure ES-3: Mid Infrared (IR) Sensor Market Shares, Dollars, First Three Quarters 2011
  • Figure ES-4: Mid Infrared (IR) Sensor Shipments, Market Forecasts, Dollars, Worldwide, 2012-2018

Mid Infrared (IR) Sensor Market Description and Market Dynamics

  • Table 1-1: IBM Integrated Product Change Management Market Driving Forces
  • Figure 1-2: IBM Definition of Smarter Computing
  • Figure 1-3: Interband-Cascade (IC) Lasers
  • Table 1-4: Commercialization Of Mid And Long-Wavelength (3-12 Microns) Infrared Semiconductor Lasers
  • Table 1-4 (Continued): Commercialization Of Mid And Long-Wavelength (3-12 Microns) Infrared Semiconductor Lasers
  • Table 1-5: Mid IR Sensing Systems Components
  • Table 1-6: Applications For Mid IR Sensing
  • Table 1-7: Mid-Infrared Fiber-Optic Sensor Characteristics

Mid Infrared (IR) Sensor Market Shares and Market Forecasts

  • Table 2-1: Mid IR Sensor Market Driving Forces
  • Table 2-2: Technologies Impacting Mid IR Sensor Market
  • Figure 2-3: Mid Infrared (IR) Sensor Market Shares, Dollars, First Three Quarters 2011
  • Figure 2-4: Mid Infrared (IR) Sensor Market Shares, Dollars, Worldwide, First Three Quarters 2011
  • Figure 2-5: Senseair NDIR (Non-dispersive Infra-Red) technology
  • Table 2-6: Key Features Of The JonDeTech Thermopile
  • Table 2-7: JonDeTech Thermopile Sensor Flexibility
  • Table 2-8: JonDeTech Thermopile Sensor Characteristics
  • Figure 2-9: Surface Mount Plastic Thermopile Layers
  • Figure 2-10: Surface Mount Plastic Thermopile
  • Figure 2-11: Surface Mount Plastic Thermopile
  • Table 2-12: Maxion Technologies Mid IR Sensor Laser products Revenue Base Areas
  • Figure 2-13: Mid Infrared (IR) Sensor Shipments, Market Forecasts, Dollars, Worldwide, 2012-2018
  • Table 2-14: Mid IR Sensor Total Market Dollars, Worldwide, 2012-2018
  • Figure 2-15: Mid Infrared (IR) Sensor Shipments, Units, Worldwide, Market Forecasts, 2012-2018
  • Figure 2-16: Military / Airline / Space / Defense Mid Infrared (IR) Sensors Shipments Market Forecasts, Dollars, Worldwide, 2012-2018
  • Table 2-17: Smart Building Mid Infrared (IR) Sensor Uses
  • Table 2-18: Smart Building Mid Infrared (IR) Sensor Market Segments
  • Figure 2-19: Smart Building Mid Infrared (IR) Sensor Shipments Market Forecasts, Worldwide, Dollars, 2012-2018
  • Figure 2-20: Smart City Mid IR Sensor Shipments Market Forecasts, Dollars, Worldwide, 2012-2018
  • Figure 2-21: MIRTHE Compound and Vibrational Absorption Analysis
  • Figure 2-22: Mirthe Assessment of QC Laser Based Sensor Challenges
  • Table 2-23: Power Technology Mid IR Sensor Applications
  • Table 2-24: Technology Mid IR Sensor Applications
  • Table 2-25: Mid IR Technology Quantum-Cascade Lasers Features
  • Figurev2-26: Daylight Solutions' Core Technology
  • Figure 2-27: Senseair Carbon Dioxide Sensors
  • Figure 2-28: Vertical Heat Flow Model Of Jondetech Thermopiles
  • Figure 2-29: Jondetech Thermopile Infrared Radiation Tetectors Generation Flex
  • Figure 2-30: Mass Spectrometry vs. Mirthe Mid IR Sensors For To Measuring Trace Gas At Ppm Or Ppb Sensitivity
  • Table 2-31: Mid IR Sensor Market Segment Forecasts, Dollars, 2012-2018
  • Figure 2-32: MID Infrared (IR) Sensor Market Industry Segments, Percent, Worldwide, 2012-2018
  • Table 2-33: Mid IR Sensor Market Industry Segments, Units, Worldwide, 2012-2018
  • Figure 2-34: Smarter Planet Market Shares, Dollars, Worldwide, First Three Quarters 2011
  • Table 2-35: Smarter Planet Market Shares, Dollars, Worldwide, First Three Quarters 2011
  • Figure 2-36: IBM Imperatives For A Smarter Planet
  • Table 2-37: IBM Positions To Support Sensor Networks
  • Figure 2-38: IBM Describes Smarter Plant Solutions Impact on IT
  • Figure 2-39: IBM Strategic Vision for Innovation
  • Figure 2-40: Smart Computing Software Modules Market Forecasts, Dollars, Worldwide, 2011-2017
  • Table 2-41: Smarter Planet Software Market Total Forecast, Dollars, Worldwide, 2011-2017
  • Table 2-42: Smarter Planet Software Market Industry Segment Forecasts, Dollars, Worldwide, 2011-2017
  • Table 2-43: Smarter Planet Software Market Industry Segment Forecasts, Percent, Worldwide, 2011-2017
  • Table 2-44: Types of Internet Connected Devices Likely to be Using Mid IR Sensors That Need SOA Software To Achieve Connectivity
  • Table 2-45: Advantages Offered by SOA
  • Table 2-46: Services Oriented Architecture SOA Market Shares, Dollars, Worldwide, 2010
  • Table 2-47: Services Oriented Architecture SOA Application Market Shares, Dollars, Worldwide, 2010
  • Table 2-48: Services oriented architecture (SOA) benefits
  • Table 2-49: Services Oriented Architecture SOA Market Driving Forces
  • Figure 2-50: MIRTHE Mass Spectroscopy Pricing Assessment
  • Figure 2-51: MIRTHE Sensor Price Per Unit Analysis
  • Figure 2-52: Mid Infrared (IR) Sensor Regional Market Segments, Dollars, First Three Quarters 2011
  • Table 2-53: Mid IR Sensor Regional Market Segments, First Three Quarters 2011

Mid Infrared (IR) Sensor Product Description

  • Table 3-1: FLIR Thermal Imaging Applications
  • Table 3-2: FLIR Technology
  • Table 3-3: FLIR Technology Systems
  • Figure 3-4: FLIR Commercial Vision Systems
  • Table 3-5: Key Features of FLIR Tau 640 Camera
  • Figure 3-6: FLIR Scout Thermal Night Vision
  • Figure 3-7: FLIR Infrared Cameras
  • Table 3-8: FLIR Thermal Imaging Technology -- CBRNE, Cameras, and Industrial
  • Table 3-9: FLIR Thermal Imaging Technology - Surveillance, Police, and Science
  • Figure 3-10: FLIR Unmanned Laser Targeting Systems
  • Figure 3-11: FLIR MEP Reconnaissance, Surveillance, Target Acquisition Laser Designator Mid IR Sensor
  • Table 3-12: Daylight Solutions Mid Infrared Sensor Applications
  • Figure 3-13: Daylight Solutions Mid IR Sensors
  • Table 3-14: Daylight Solutions Monitoring
  • Figure 3-15: Daylight Solutions Industry Specific Solutions
  • Table 3-16: Daylight Solutions Mid IR Detector Key Features
  • Figure 3-17: Daylight Solutions Tunable Laser Tuning
  • Figure 3-18: Daylight Solutions Narrow Tuning
  • Table 3-19: Daylight Solutions Gaussian Beam Profile
  • Table 3-20: Daylight Solutions EC-QCL Laser Gaussian Beam Profile
  • Table 3-21: Daylight Solutions Tunable Mid-IR External-Cavity CW-MHF Lasers
  • Table 3-21 (Continued): Daylight Solutions Tunable Mid-IR External-Cavity CW-MHF Lasers
  • Table 3-21 (Continued): Daylight Solutions Tunable Mid-IR External-Cavity CW-MHF Lasers
  • Figure 3-22: Daylight Solutions Mid-IR
  • Figure 3-23: Daylight Solutions Controller
  • Figure 3-24: Daylight Solutions Applications
  • Figure 3-25: Daylight Solutions Laserhead
  • Table 3-26: Daylight Solutions Tunable Mid-IR External Cavity Lasers Features
  • Table 3-27: Daylight Solutions Tunable Mid-IR External Cavity Lasers Advantages
  • Table 3-28: Daylight Solutions Products
  • Figure 3-29: Daylight Solutions Fixed-Wavelength Mid-IR External-Cavity Lasers
  • Table 3-30: Daylight Solutions Fixed-Wavelength Mid-IR External-Cavity Lasers Key Features
  • Table 3-31: Daylight Solutions Fixed-Wavelength Mid-IR External-Cavity Lasers Applications
  • Figure 3-32: Daylight Solutions Mid-IR HgCdTe Detectors
  • Table 3-33: Daylight Solutions Mid-IR HgCdTe Detectors Key Features
  • Table 3-34: Daylight Solutions Core Technology
  • Figure 3-35: Daylight Solutions' Core Technology
  • Table 3-36: Daylight Solutions Power Technology Mid IR Sensor Applications
  • Table 3-36 (Continued): Daylight Solutions Power Technology Mid IR Sensor Applications
  • Table 3-37: SenseAir® CO2 Sensors
  • Table 3-38: SenseAir® CO2 Energy Saving Intelligence And Comfort Sensors
  • Table 3-39: SenseAir® CO2 Process Yield And Economic Outcome Sensors
  • Table 3-40: SenseAir® CO2 personal safety Sensors
  • Figure 3-41: SenseAir Products
  • Figure 3-42: Senseair Carbon Dioxide Sensors
  • Figure 3-43: SenseAir Carbon Dioxide Sensor
  • Figure 3-44: SenseAir Circuit Board
  • Table 3-45: Sensor Switch Product Highlights
  • Figure 3-46: Sensor Switch Smart Buildings
  • Table 3-47: Sensor Switch Lighting Controls Technical Services
  • Table 3-48: Sensor Switch Engineering Advances
  • Figure 3-49: Block Engineering Quantum Cascade Laser
  • Table 3-50: Block Engineering Tunable Mid-IR Sources Products
  • Figure 3-51: Block Engineering LaserScope Target Size
  • Table 3-52: Block Engineering Quantum Cascade Laser Products
  • Table 3-53: Block Engineering Standoff Passive FTIR Spectroscopy Products
  • Table 3-54: Block Engineering Examples of LaserScan Functions:
  • Table 3-55: Block Engineering Laserscan Product Line Functions
  • Table 3-56: Block Engineering LaserScope Functions:
  • Table 3-57: Block Engineering Quantum Cascade Laser (QCL) LaserTune™
  • Figure 3-58: Sofradir Mid IR EPSILON MW 384x288
  • Figure 3-59: Sofradir IR Products
  • Figure 3-60: Sofradir Jet IR Product
  • Figure 3-61: Sofradir Vision IR Product
  • Figure 3-62: Sofradir Marine IR Product
  • Figure 3-63: Sofradir Helicopter IR Product
  • Figure 3-64: Sofradir EPSILON MW 384x288
  • Table 3-65: Sofradir Hand-Held Thermal Imaging UAV Applications
  • Table 3-66: Sofradir ROIC Modes
  • Table 3-67: Sofradir Development Trends In Cooled Infrared Technology
  • Figure 3-68: Sofradir VEGA LW 384x288 QWIP (25μm pitch)
  • Figure 3-69: Eikips Technologies Biomarkers in Breath
  • Table 3-70: Ekips Technologies Category Examples Of Laser Emission Spectra
  • Figure 3-71: JonDeTech AB Low-Cost, Surface Mount Thermopiles
  • Table 3-72: JonDeTech AB Consumer Electronics Mid IR Sensors
  • Table 3-73: JonDeTech AB Residential Control Systems Mid IR Sensors
  • Table 3-74: JonDeTech's Technology Competitive Advantages
  • Figure 3-75: JonDeTech AB JIRS3 Sensor
  • Table 3-76: JonDeTech AB Key Features of the Thermopile
  • Figure 3-77: JonDeTech AB JIRS5 Sensor
  • Figure 3-78: JonDeTech AB Close-up of JIRS5 Sensor
  • Figure 3-79: JonDeTech AB Nanowire Sensors
  • Figure 3-80: JonDeTech AB Linear Array of IR Sensorson Polyimide Foil
  • Table 3-81: JonDeTech Thermopile Applications
  • Figure 3-82: JonDeTech AB Vertical Heat Flow Model Of Jondetech Thermopiles
  • Figure 3-83: JonDeTech AB Vertical Heat Flow Model
  • Figure 3-84: Jondetech Thermopile Infrared Radiation Tetectors Generation Flex
  • Figure 3-85: Micropelt Thermoharvester
  • Figure 3-86: EnOcean ECO 100 - Motion Energy Harvesting
  • Table 3-87: EnOcean Energy Harvesting Motion Converter
  • Table 3-88: EnOcean Thermo Converter
  • Table 3-89: EnOcean Energy Converters For Energy Harvesting Wireless Applications
  • Figure 3-90: Agiltron Room Temperature Automated Chemical Processing (ACP) Sensors
  • Figure 3- 91: Agiltron Typical Room Temperature Electrical Characteristics Of Automated Chemical Processing (ACP)
  • Table 3-92: Agiltron Response of PbS Detectors
  • Figure 3-93: Agiltron Infrared Detector Configurations
  • Figure 3-94: Agiltron Lead Sulfide Infrared (PbS) Detector Array
  • Figure 3-95: Quartz Resonator Photoacoustic Sensing Cell
  • Figure 3-96: Mass Spectrometry vs. Mirthe Mid IR Sensors For To Measuring Trace Gas At Ppm Or Ppb Sensitivity
  • Table 3-97: Mirthe Impact In Environment And Homeland Security:
  • Table 3-98: Mirthe Impact In Health
  • Table 3-99: Mirthe Impact In Industrial Outreach
  • Figure 3-100: Mirthe's Strategic 3-Level Framework
  • Figure 3-101: Cascade Technologies CT2100 Analyzer
  • Table 3-102: Cascade Technologies CT2100 analyzer Measurements*
  • Table 3-103: Cascade Technologies Analyzers
  • Figure 3-104: Cascade Technologies Quantum Cascade Laser (QCL),
  • Table 3-105: Cascade Technologies Rapid Sweep Combined With High Duty Cycles Key Advantages
  • Figure 3-106: Maxion Laser Products
  • Figure 3-107: Maxion Products Single Mode Lasers
  • Table 3-108: Integration into Maxion's Turn-Key Laser System Benefits
  • Table 3-109: Maxion Single Mode Laser Device Performance
  • Table 3-110: Maxion Technologies Infrared Semiconductor Laser Products Solutions Areas
  • Figure 3-111: Maxion Multimode Lasers High Heat Load Laser Package
  • Figure 3-112: Maxion Turnkey Laser System Single Mode Lasers
  • Figure 3-113: Maxion Linear Arrays Of IC and QC Lasers --C-mount and NS-mount Lasers
  • Figure 3-114: Maxion LED in a Dewar
  • Figure 3-115: VIASPACE Ionfinity SIM Ionizes The Sample Without Fragmentation
  • Figure 3-116: Ionfinity Industrial Process Control And Environmental Monitoring
  • Table 3-117: Power Technology Available Wavelengths & Output Powers
  • Table3-118: Power Technology Applications for an infrared viewer
  • Table 3-119: Power Technology Quantum-Cascade Lasers Features
  • Table 3-120: Power Technology Quantum-Cascade Lasers Mechanical Dimensions
  • Figure 3-121: Power Technology Temperature Controlled Laser Diode Modules
  • Table 3-122: Power Technology Mid IR Sensor Applications
  • Figure 3-123: Power Technology Infrared Viewers
  • Figure 3-124: Power Technology Mid IR Specifications
  • Table 3-125: Power Technology Infrared Illuminator
  • Figure 3-126: Power Technology. Infrared Photosensivity
  • Table 3-127: Power Technology Near Infrared Viewer Power Densities
  • Figure 3-128: Power Technology Laser Modules for OEM
  • Figure 3-129: Squared Device
  • Table 3-130: Squared Firefly-IR Applications Positioning
  • Table 3-130 (Continued): Squared Firefly-IR Applications Positioning
  • Table 3-131: Squared Firefly-THz features
  • Figure 3-132: Novawave Technology IRIS™ 1000 Tunable Laser System
  • Table 3-133: Novawave Technology System Features
  • Figure 3-134: GE Wireless Sensor Networks
  • Table 3-135: PNNL Electronics Products
  • Table 3-136: PNNL System Integration
  • Figure 3-137: Hamamatsu Infrared Detector
  • Figure 3-138: Hamamatsu InGaAs Photodiodes
  • Figure 3-139: Hamamatsu Detectors With Sensitivity To Wavelengths
  • Figure 3-140: Hamamatsu Continuous-Wave QCL For Room Temperature Operation
  • Table 3-141: Hamamatsu Laser Group Products
  • Figure 3-142: Opto Solutions Products
  • Table 3-143: Opto Solutions - IR Photonics Features and Applications
  • Figure 3-144: ILX Lightwave Laser Diode Instrumentation

Mid Infrared (IR) Sensor Technology

  • Table 4-1: Daylight Solutions Basic Technologies
  • Figure 4-2: Thermocouple Lead Structures Based On Nanotechnology
  • Figure 4-3: JonDeTechs Nanotechnology Thermopiles
  • Figure 4-4: Nanowire Battery Can Hold 10 Times The Charge Of Existing Lithium-Ion Battery
  • Table 4-5: Computerization Of Microscopic Manufacturing Procedure Benefits
  • Table 4-6: Battery Chemistries At The Forefront For Mid IR Sensors
  • Figure 4-7: Biofilm Formation
  • Figure 4-8: Mid IR Spectrum Wavenumber and Absorbance
  • Figure 4-9: Mid-Infrared Light Novel Mid-Infrared Materials
  • Figure 4-10: Mid-Infrared Light Sources
  • Figure 4-11: Mid IR Sensor Applications & Testbeds
  • Figure 4-12: University of Oklahoma Researchers Are Working On A High-Tech Breath Test
  • Figure 4-13: Physical Vapor Nanoparticle Synthesis Process
  • Figure 4-14: Nanophase Technologies Organic Dispersions In Manufacturing
  • Figure 4-15: Nanophase Technologies Organic Dispersions In Polar And Non-Polar Organic Fluids

Mid Infrared (IR) Sensor Company Profiles

  • Table 5-1: Block Engineering LaserScope IR Microscope Key Benefits & Advantages
  • Table 5-2: Bosch Building Automation Sensors
  • Table 5-3: Bosch Building Automation Sensor Management Architecture
  • Figure 5-4: Directed Vapor Technology
  • Table 5-5: FLIR Systems Thermal Imaging Infrared Cameras Target Markets
  • Table 5-6: FLIR Systems Commercial Vision Applications
  • Table 5-7: FLIR Systems Sensor Applications
  • Table 5-8: FLIR Systems Sensor Uses
  • Table 5-9: FLIR Systems Sensor Market Segments
  • Table 5-10: FLIR Detection System Sensor Applications
  • Figure 5-11: GE Wireless Sensor Networks
  • Table 5-12: II-VI Significant Materials Capabilities
  • Table 5-13: II-VI Specific Growth Strategies:

JOHNSON CONTROLS SENSORS
HUMIDITY
TEMPERATURE
PRESSURE
CARBON DIOXIDE
OCCUPANCY
NETWORK SENSORS

Source: WinterGreen Research, Inc.

  • Table 5-14: Johnson Controls Sensors
  • Figure 5-15: Johnson Controls Sensor Products
  • Table 5-16: Johnson Controls Sensor Types
  • Table 5-17: Johnson Controls Valve Categories:
  • Figure 5-18: Airsense Smart Building Monitor
  • Figure 5-19: Lockheed Martin F35B In-Flight STOVL Operations
  • Figure 5-20: Lockheed Martin Autonomous Underwater Vehicles
  • Figure 5-21: Lockheed Martin C-139 J Cargo Plane
  • Figure 5-22: Lockheed Martin Next Generation Identification Systems
  • Figure 5-23: Lockheed Martin Linking Legacy Radio Waveforms to AMF JTRS
  • Figure 5-24: M Squared Device
  • Table 5-25: M Squared Firefly-IR Applications Positioning
  • Table 5-25 (Continued): M Squared Firefly-IR Applications Positioning
  • Table 5-26: M Squared Firefly-THz features
  • Figure 5-27: Quartz Resonator Photoacoustic Sensing Cell
  • Figure 5-28: Mass Spectrometry vs. Mirthe Mid IR Sensors For To Measuring Trace Gas At Ppm Or Ppb Sensitivity
  • Table 5-29: Mirthe Impact In Environment And Homeland Security:
  • Table 5-30: Mirthe Impact In Health:
  • Table 5-31: Mirthe Impact In Industrial Outreach:
  • Figure 5-32: Mirthe's Strategic Multi-level Mid IR Sensor Framework
  • Table 5-33: OPTO Solutions Opto 22 Systems Markets
  • Table 5-34: Maxion Technologies Laser Product Segment Positioning
  • Table 5-35: Pacific Northwest National Laboratory (PNNL) Focus
  • Table 5-36: Pacific Northwest National Laboratory (PNNL) Electronics Products
  • Table 5-37: PNNL System Integration

POWER TECHNOLOGY LASER APPLICATIONS
Microscopy
Display
Spectroscopy
Holography
Laser-induced fluorescence
Flow cytometry
High-resolution printing

Source: WinterGreen Research, Inc.

  • Table 5-38: Power Technology Laser Applications
  • Table 5-39: Sofradir Notable Accomplishments

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

全球中紅外線感測器市場與奈米技術:市場佔有率與預測(2012-2018年)是由出版商WinterGreen Research, Inc.在2011年12月12日所出版的。這份市場調查報告書包含818 Pages 價格從美金3800起跳。

Back to Top
;