Cover Image
市場調查報告書

低功耗設計創新

Innovations in Low-Power Electronics

出版商 Technical Insights (Frost & Sullivan) 商品編碼 370746
出版日期 內容資訊 英文 64 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
低功耗設計創新 Innovations in Low-Power Electronics
出版日期: 2016年08月24日 內容資訊: 英文 64 Pages
簡介

本報告以低功耗設計為焦點,提供低功耗設計的重要性,影響低功耗設計的引進的各式各樣的因素,主要創新者簡介,引進的產業趨勢,實現低功耗設計的主要技術策略,實現技術的主要應用等系統性資訊。

第1章 摘要整理

第2章 低功耗設計:sneak preview

  • 電晶體尺寸的縮小引起電力洩漏問題的增加
  • 低功耗設計的促進成長要素
  • 電子電路的消耗功率的類型 - 靜態,動態及短路電路
  • 技術策略:設計、電力最佳化,材料,及設備技術

第3章 低電力設計、電力最佳化、策略

  • 系統層級的電力最佳化
  • 演算法層級的電力最佳化
  • 架構層級的電力最佳化
  • 開路層級的電力最佳化
  • 技術水準的電力最佳化

第4章 低功耗設計用材料

  • 砷化銦鎵
  • 使彈性電晶體成為可能的二硫化鉬
  • 石墨烯:對低功耗設計來說的驚人材料

第5章 並聯低電力技術

  • 自旋電子學:半導體矽技術的替代
  • 低功耗設計用MEMS
  • 高速低電力處理用3D IC

第6章 主要創新者

  • Squishy Circuits電晶體
  • 超低電力Wi-Fi
  • 3D-地圖處理器
  • 金屬石墨烯奈米帶
  • 節能型隧道FET交換器、電路
  • 二硫化鉬的旋轉動態
  • 超高速,低電力光電晶體
  • FET用高性能聚合物絕緣體
  • 小電流自旋電子學設備

第7章 應用形勢

  • 家電設備的低功耗設計
  • 運算設備的低功耗設計
  • 感測器,通訊設備及醫療設備的低功耗設計

第8章 策略展望

  • 低功耗設計的未來:3D IC,石墨烯,及矽電子產品
  • 低功耗設計的未來:MEMS、自旋電子學及銦鎵砷化物
  • 策略考察、NPD、規模經濟以及未來的機會

第9章 主要專利

  • 自旋電子學、ADC
  • 低電力資訊處理、旋轉軌道邏輯
  • 旋轉扭矩RAM及附內插器晶粒IC
  • MoS2
  • GaAs及雷射

第10章 主要的契約

第11章 關於FROST & SULLIVAN

目錄
Product Code: D70D-01-00-00-00

Technology Strategies to Achieve Low Power Consumption in Electronic Devices

Low-power electronics, also known as low-power electronic design, refers to the designing and manufacturing of electronic devices that consume less power. Over the years, the number of transistors on integrated chips has grown exponentially, enabling the production of complex electronic devices that are portable and mobile. However, the existing semiconductor technology is increasingly failing to deliver desired device characteristics with the shrinking transistor size. Power leakage and increasing power density are major issues plaguing the electronics industry. Low-power electronics offers comprehensive solutions and techniques to design devices consuming less power and methods to reduce power leakages in electronic systems.

Low-power electronics mostly deals with techniques and methods to reduce the power consumption in electronic devices as the size of the transistors keeps reducing. However, since silicon transistors are reaching their physical limits, low-power electronics research is heading toward identifying novel materials and alternatives to silicon-based (CMOS) electronics.

This technology and innovation report captures current trends, market scenario, and key technologies that influence the adoption of smart lighting solutions.

Key questions that are covered in the report include:

  • What is the significance of low power electronics?
  • What are the various factors that affect the adoption of low power electronics?
  • Who are the key innovators and their innovation profiles?
  • What is the industry trend driving adoption?
  • What are the key technologies strategies enabling low power electronics?
  • What are the key applications enabled by the technology?
  • What are future growth opportunities?

Table of Contents

1.0. EXECUTIVE SUMMARY

  • 1.1. Research Scope
  • 1.2. Research Methodology
  • 1.2. Research Methodology (continued)
  • 1.3. Predictions for Low-power Electronics
  • 1.4. Key Findings - Technology Impact, Market Potential
  • 1.5. Key Findings - Applications Diversity

2.0. LOW POWER ELECTRONICS - A SNEAK PREVIEW

  • 2.1. Shrinking Transistor Size has Resulted in Increase in Power Leakage Issues
  • 2.2. Factors Driving the Growth of Low-power Electronics
  • 2.3. Power Dissipation Types in Electronic Circuits - Static, Dynamic and Short-Circuit
  • 2.4. Technology Strategies - Design and Power Optimization, Materials, and Device Technologies

3.0. LOW-POWER DESIGN AND POWER OPTIMIZATION AND STRATEGIES

  • 3.1. System-level Power Optimization
  • 3.2. Algorithm-level Power Optimization
  • 3.3. Architecture-level Power Optimization
  • 3.4. Circuit-level Power Optimization
  • 3.5. Technology-level Power Optimization

4.0. MATERIALS FOR LOW-POWER ELECTRONICS

  • 4.1. Indium Gallium Arsenide - The Fast Transistors
  • 4.2. Molybdenum Disulfide Enabling Flexible Transistors
  • 4.3. Graphene - The Wonder Material for Low-power Electronics

5.0. PARALLEL LOW-POWER TECHNOLOGIES

  • 5.1. Spintronics-An Alternative to Solid State Silicon Technology
  • 5.2. Micro-electromechanical Systems (MEMS) for Low-power Electronics
  • 5.3. Three-dimensional Integrated Circuits for Low-power Processing at High Speeds

6.0. KEY INNOVATIONS

  • 6.1. Squishy Transistors
  • 6.2. Super Low-power Wi-Fi
  • 6.3. 3D-MAPS Processor
  • 6.4. Metallic Graphene Nanoribbons
  • 6.5. Energy-Efficient Tunnel FET Switches and Circuits
  • 6.6. Spin Dynamics in Molybdenum Disulfide
  • 6.7. Ultrafast, Low-power Photonic Transistor
  • 6.8. High-Performance Polymer Insulators for FET
  • 6.9. Low-Current Spintronic Device

7.0. APPLICATION LANDSCAPE

  • 7.1. Low-power Electronics in Consumer Electronics Devices
  • 7.2. Low-power Electronics in Computing Devices
  • 7.3. Low-power Electronics in Sensors, Communication Devices, and Medical Devices

8.0. STRATEGIC PERSPECTIVES

  • 8.1. Future of Low-power Electronics - 3D ICs, Graphene, and Silicon Electronics
  • 8.2. Future of Low-power Electronics - MEMS, Spintronics, and Indium Gallium Arsenide
  • 8.3. Strategic Insights - NPD, Economies of Scale, and Future Opportunities

9.0. KEY PATENTS

  • 9.1. Key Patents - Spintronics and ADC
  • 9.2. Key Patents - Low Power Information Processing and Spin-Orbit Logic
  • 9.3. Key Patents - Spin Torque RAM and IC with Interposer Die
  • 9.4. Key Patents - MoS2
  • 9.5. Key Patents - GaAs and Laser

10.0. KEY CONTACTS

  • 10.1. Key Contacts
  • Legal Disclaimer

11.0. THE FROST & SULLIVAN STORY

  • 11.1. The Frost & Sullivan Story
  • 11.2. Global Perspective
  • 11.3. Industry Convergence
  • 11.4. 360° Research Perspective
  • 11.5. Implementation Excellence
  • 11.6. Our Blue Ocean Strategy
Back to Top