Cover Image
市場調查報告書

鋰離子電池用陽極材料:技術趨勢、市場預測:2016年

<2016> Lithium Ion Battery Anode Technology Trend and Market Forecast

出版商 SNE Research 商品編碼 386345
出版日期 內容資訊 英文 334 Pages
商品交期: 請詢問到貨日
價格

Notice: The original report is written in Korean. Please ask us for more information regarding delivery time.

Back to Top
鋰離子電池用陽極材料:技術趨勢、市場預測:2016年 <2016> Lithium Ion Battery Anode Technology Trend and Market Forecast
出版日期: 2016年10月31日 內容資訊: 英文 334 Pages
簡介

本報告提供鋰離子電池 (LIB) 用陽極材料的技術及市場調查,陽極材料種類與概要,各種特性,新材料的開發趨勢,主要陽極材料製造商與其配合措施,LIB用陽極材料的消費量、供給量的變化與預測,製造能力,價格趨勢等彙整資料。

第1章 簡介

  • 金屬鋰二次電池
  • 鋰金屬陽極材料
  • 替代鋰金屬的陽極材料的必要條件
  • 開發現況:碳為基礎的陽極材料
  • 開發現況:陽極材料

第2章 碳陽極材料

  • 簡介:碳材料
    • 碳原子結合
    • 碳的製造
      • 氣相
      • 液相
      • 個體相
  • 軟碳陽極材料
    • 石墨
      • 結構特性
      • 電化學特性
      • 電極反應機制
      • 石墨碳材料、商用石墨的製造
        • 合成石墨 (MCMB/MCF/MAG)
        • 天然石墨
      • 塗層碳石墨
    • 低溫共燒碳
      • 結構特性
      • E電子化學特性
      • 電極反應機制
      • 製造法
  • 硬碳陽極材料
    • 硬碳材料
      • 結構特性
      • 電子化學特性
      • 電極反應機制
      • 製造法
  • LIB的特徵:各碳陽極材料

第3章 合金陽極材料

  • 簡介:合金陽極材料
  • 特徵、製造技術
    • 問題、解決方案
    • 金屬複合陽極材料
    • 金屬碳複合陽極材料
    • 其他Si陽極材料
    • 金屬/合金薄膜陽極材料

第4章 高功率陽極材料的開發趨勢

  • 嵌入材料
  • 合金材料
  • 轉換材料
  • 奈米結構化微粒子
  • 展望

第5章 複合陽極材料

  • 氧化物陽極材料
    • Li4Ti5O12(或Li4/3Ti5/3O4)
    • TiO2
      • Rutile TiO2
      • Anatase TiO2
      • TiO2-B
      • Brookite
  • 氮化物陽極材料

第6章 陽極材料:鋰離子電池的穩定性的影響

第7章 鋰二次電池用陽極材料:企業趨勢

  • 陽極材料製造商 (日本)
    • 日立化成
    • Nippon Carbon
    • JFE Chemical
    • 三菱化學
    • Hitachi Powdered Metals
    • KUREHA
    • 昭和電工
    • 其他
  • 陽極材料製造商 (中國)
    • BTR Eneregy Materials Co., Ltd.
    • Shanghai Shanshan Tech Co., Ltd.
    • Morgan AM&T Hairong Co., Ltd.
    • Easpring
    • Changsha Xingcheng
    • Zichen
  • 陽極材料製造商 (韓國)
    • Posco Kemtech
    • GS Energy
    • Aakyung Petrochemical
    • Iljin Electric
    • Daejoo Electronic Materials

第8章 鋰二次電池用陽極材料:市場預測

  • 目前消費量
    • 全球消費量的變化
    • 消費量的變化:各國
    • 消費量的變化:各類型
    • 消費量的變化:各國家、類型
  • 目前消費量:各鋰離子二次製造商
    • Samsung SDI
    • LG Chemical
    • SK Innovation
    • Panasonic
    • SONY
    • AESC
    • 日立
    • ATL
    • BYD
    • Lishen
    • Coslight
  • 目前供給量:各企業
    • 日立化成
    • Nippon Carbon
    • JFE Chemical
    • 三菱化學
    • BTR
    • ShanShan
    • Zichen
    • Posco Chemtech
    • GS Energy
  • LIB用陽極材料的生產能力
  • LIB用陽極材料市場預測
  • LIB用陽極材料的價格預測

文獻

目錄

Anode material receiving increasing attention with expansion of LIB applications.

Graphite has held its dominant position, since Sony succeeded in commercialization of LIB for the first time in 1991. Contrary to other materials that have undergone significant changes such as anode materials and separators, it has remained the same for last 20 years.

Recently as the required battery capacity in smartphones increase to over 3,000mA and tablet and ultra pc use large storage lithium-polymer battery with over 4,000mAh, the capacity level of Anode material is also growing substantially as well.

Also, as medium-large sized battery used in electric vehicle and ESS need high-capacity Anode material, silicon (Si) and tin (Sn) from carbon-based and graphite-based Anode material that were originally used are recently receiving attention, and research in these field is also very active.

Especially regarding silicon (Si)-based Anode, High Power Anode related technologies are being announced after one another, rising the expectation of commercialization.

This report provides the technology trends of various types of anode materials, especially the recent trend focused on alloy and compound-based materials.

In addition, this report examines the current status of anode material production by manufacturer in Japan, China, Korea and other countries; 7 Japanese companies, 6 Chinese companies and 5 Korean companies.

Lastly, the consumer-side trend and the provider-side trend are provided based on pipelines by country, manufacturer, and type. In addition, the demand for the anode material market in the IT and EV market until 2020 is forecasted.

Table of Contents

1. Introduction

  • 1.1. Lithium metal secondary battery Li-ion battery
  • 1.2. Lithium Metal Anode
  • 1.3. Requirement for anode material as alternative for lithium metal
  • 1.4. Current status of development of carbon based anode
  • 1.5. Current status of development of anode material

2. Carbon-based anode material

  • 2.1. Introduction of Carbon-based material
    • 2.1.1. Carbon atom combination
    • 2.1.2. Manufacture of Carbon
      • 2.1.2.1. Gas-phase carbonization
      • 2.1.2.2. Liquid phase carbonization
      • 2.1.2.3. Solid state carbonization
  • 2.2. Soft carbon based anode material
    • 2.2.1. Graphite
      • 2.2.1.1. Structural property
      • 2.2.1.2. Electrochemical property
      • 2.2.1.3. Electrode reaction mechanism
      • 2.2.1.4. Manufacturing graphitic carbon material and commercial graphite
        • 2.2.1.4.1. Synthetic graphite (MCMB/MCF/MAG)
        • 2.2.1.4.2. Natural graphite
      • 2.2.1.5. Coated carbon graphite
    • 2.2.2. Low temperature calcined carbon
      • 2.2.2.1. Structural property
      • 2.2.2.2. Electro-chemical property
      • 2.2.2.3. Electrode reaction mechanism
      • 2.2.2.4. Manufacturing method
  • 2.3. Hard carbon based anode material
    • 2.3.1. Hard carbon based materials (non-graphitizable carbons)
      • 2.3.1.1. Structural property
      • 2.3.1.2. Electro-chemical property
      • 2.3.1.3. Electrode reaction mechanism
      • 2.3.1.4. Manufacturing method
  • 2.4. LIB Characteristic by used Carbon based anode

3. Alloy anode material

  • 3.1. Introduction of alloy anode
  • 3.2. Characteristic and manufacturing technology of alloy anode material
    • 3.2.1. Problem and solution
    • 3.2.2. Metal composite anode material
    • 3.2.3. Metal-Carbon composite anode material
      • 3.2.3.1. Carbon coating for high active metal and alloy
      • 3.2.3.2. High capacity active metal and alloy/graphitic carbon composite
      • 3.2.3.3. Carbon coating for composite of high capacity active metal and alloy/graphitic carbon
      • 3.2.3.4. Si chemical deposition for graphite and carbon nano fiber
      • 3.2.3.5. Yolk-shell Composite structure
    • 3.2.4. Other Si anode material
      • 3.2.4.1. Three-dimensional porous Si
      • 3.2.4.2. Si nano tube
    • 3.2.5. Metal/alloy thin-film anode

4. High-powered Anode materials development trends

  • 4.1. Intercalation materials
  • 4.2. Alloying materials
  • 4.3. Conversion materials
  • 4.4. Nano-structured Micro-sized Particles
  • 4.5. Outlook

5. Compound anode material

  • 5.1. Oxide anode material
    • 5.1.1. Li4Ti5O12(or Li4/3Ti5/3O4)
    • 5.1.2. TiO2
      • 5.1.2.1. Rutile TiO2
      • 5.1.2.2. Anatase TiO2
      • 5.1.2.3. TiO2-B
      • 5.1.2.4. Brookite
  • 5.2. Nitride anode material

6. Influence of anode on stability of Li-ion battery

7. Anode material for lithium secondary battery: Company trends

  • 7.1. Anode manufacturer in Japan
    • 7.1.1. Hitachi Chemical
    • 7.1.2. Nippon Carbon
    • 7.1.3. JFE Chemical
    • 7.1.4. Mitsubishi Chemical
    • 7.1.5. Hitachi Powdered Metals
    • 7.1.6. Kureha
    • 7.1.7. Showa Denko
    • 7.1.8. Other anode manufacturers in Japan
  • 7.2. Anode manufacturer in China
    • 7.2.1. BTR Eneregy Materials Co., Ltd.
    • 7.2.2. Shanghai Shanshan Tech Co., Ltd.
    • 7.2.3. Morgan AM&T Hairong Co., Ltd (Changsha Hairong New Materials Co., Ltd)
    • 7.2.4. Easpring
    • 7.2.5. Changsha Xingcheng
    • 7.2.6. Zichen
  • 7.3. Anode manufacturers in Korea
    • 7.3.1. Posco Kemtech
    • 7.3.2. GS Energy
    • 7.3.3. Aakyung Petrochemical
    • 7.3.4. Iljin Electric
    • 7.3.5. Daejoo Electronic Materials

8. Market forecast- Anode material for Lithium secondary battery (~2020)

  • 8.1. Current status of global anode material consumption
    • 8.1.1. Change in global anode material consumption
    • 8.1.2. Change in anode material consumption by country
    • 8.1.3. Change in anode material consumption by type
    • 8.1.4. Change in anode material consumption by country and type
  • 8.2. Current status of anode material consumption by Li-ion secondary manufacturer
    • 8.2.1. Samsung SDI- current status of anode material consumption
    • 8.2.2. LG Chemical-current status of anode material consumption
    • 8.2.3. SK Innovation-current status of anode material consumption
    • 8.2.4. Panasonic-current status of anode material consumption
    • 8.2.5. Sony-current status of anode material consumption
    • 8.2.6. AESC-current status of anode material consumption
    • 8.2.7. Hitachi-current status of anode material consumption
    • 8.2.8. ATL-current status of anode material consumption
    • 8.2.9. BYD-current status of anode material consumption
    • 8.2.10. Lishen-current status of anode material consumption
    • 8.2.11. Coslight-current status of anode material consumption
  • 8.3. Current status of anode material supply by company
    • 8.3.1. Hitachi Chemical
    • 8.3.2. Nippon Carbon
    • 8.3.3. JFE Chemical
    • 8.3.4. Mitsubishi Chemical
    • 8.3.5. BTR
    • 8.3.6. ShanShan
    • 8.3.7. Zichen
    • 8.3.8. Posco Chemtech
    • 8.3.9. GS Energy
  • 8.4. LIB Anode Capacity of production
  • 8.5. LIB Anode Market Forecast (~2020)
  • 8.6. LIB Anode Price Forecast (~2020)

References

Back to Top