Cover Image
市場調查報告書

高電壓陰極(正極)技術的開發趨勢及提案

High-voltage Cathode Technology Development Trend and Proposal

出版商 SNE Research 商品編碼 310091
出版日期 內容資訊 英文 102 Pages
商品交期: 請詢問到貨日
價格

Notice: The original report is written in Korean. Please ask us for more information regarding delivery time.

Back to Top
高電壓陰極(正極)技術的開發趨勢及提案 High-voltage Cathode Technology Development Trend and Proposal
出版日期: 2014年07月01日 內容資訊: 英文 102 Pages
簡介

鋰離子電池(LIB)的性能從1990年的商品化以來,一直在演進,不過由於低成本且大容量的材料尚未實現,在大容量性這點上發展非常落後。為了克服這個問題,以LIB的4個主要結構要素為焦點的開發積極地進行,而其中陰極(正極)材料的開發,以增加對陰極材料的輸入電壓實現大容量為目標。

本報告提供以實現大容量為目標的高電壓陰極(正極)材料開發趨勢的相關調查、LIB及LIB用陰極(正極)材料的市場及需求趨勢、LIB陰極材料的各種課題、高電壓LIB陰極材料的開發提案等彙整。

第1章 鋰離子電池(LIB)市場

  • 二次鋰電池用途的擴大
  • 二次鋰電池開發的4大目標
  • LIB市場收益預測:全部門
  • LIB市場電池數預測:IT部門
  • xEV市場台數的預測
  • 全球ES市場預測:電池容量
  • LIB成本的預測(電池、包裝)
  • LIB成本結構
  • 4大主要零組件的開發藍圖
  • WPM計劃的目標
  • Galaxy S系列和二次鋰電池的演進

第2章 LIB陰極(正極)材料市場趨勢

  • 全球LIB陰極材料需求的預測
  • 全球LIB陰極材料需求:各地區
  • 全球LIB陰極材料需求:各電池製造廠商
  • 陰極材料的消費分析:SDI
  • 陰極材料的消費分析:LGC
  • 陰極材料的消費分析:Panasonic
  • 陰極材料的消費分析:AESC
  • LIB陰極材料的銷售額:各供應商
  • 陰極材料消費量的變化:各類型
  • 材料成本:各類型

第3章 高電壓LIB陰極材料的課題

  • LIB陰極材料的必要條件
  • LIB陰極材料的主要特性
  • 層狀陰極材料
    • LMO2
    • LMM'M"O2等

第4章 高電壓陰極材料的開發提案

  • 第1提案:金屬氧化物的表面處理
  • 第2提案:金屬鹵素化物的表面處理
  • 第3提案:金屬氫氧化物的表面處理
  • 第4提案:導電體的表面處理
    • 開發概念
    • 表面處理前後的鈕扣電池性能
    • 表面處理前後的鈕扣電池的循環壽命
    • 各種條件化的循環壽命等

第8章 摘要、總論

目錄
Product Code: R132SB2014010

LIBs were first adopted in small IT devices such as note PCs and HHP and has expanded their territory into various applications including electric vehicles and energy storage systems. Requirements for LIBs vary from application to application

The R&D on LIBs has been mainly directed toward high capacity, high output, low price and high safety.

Since the first commercialization in 1990, LIBs have constantly evolved in terms of performance. Taking cylindrical batteries as an example, their capacity has increased by 2 times but prices declined to less than ½. Nevertheless, the efforts to achieve high capacity is progressing slowly because little progress has been made in securing low-cost, high capacity materials for LIBs.

Due to the slow progress in securing high performance materials, the development of high capacity LIBs has slowdown. To overcome this challenge, there are aggressive efforts, focused on the 4 key components. Among them, the development of cathode materials is directed to achieving high capacity by increasing the charging voltage of cathode materials.

This report introduces the current trends in the development of cathode materials with high voltage charge capacity and challenges, proposing the directions for future R&D activities.

Table of Contents

1. LIB Market

  • 1.1. Expanding Applications of Li-ion Secondary Batteries
    • 1.1.1. Li-ion Secondary Battery Applications by Capacity
  • 1.2. 4 Key Targets for Development of Li-ion Secondary Batteries
    • 1.2.1. R&D Priority Areas in Li-ion Secondary Batteries by Generation
  • 1.3. LIB market forecast -all segments [2011-2018, , revenue]
  • 1.4. LIB Market Forecast- IT Segment[2012-2018, number of cells]
    • 1.4.1. LIB Market Forecast- IT Segment[2012-2018]
  • 1.5. xEV Market Forecast[2012-2018, number of vehicles]
    • 1.5.1. xEV Market Forecast [battery capacity]
  • 1.6. Global ESS Market[2012-2018, battery capacity]
  • 1.7. LIB Cost Forecast[Cell, Pack]
  • 1.8. LIB Cost Structure Analysis
  • 1.9. Roadmap for Development of 4 Key LIB Components
  • 1.10. WPM Project Goals
  • 1.11. Evolution of Li-ion Secondary Batteries with Galaxy S Series

2. LIB Cathode Material Market Trend

  • 2.1. Global LIB Cathode Material Demand Forecast['12 ~ '18]
  • 2.2. Global LIB Cathode Material Demand by Region['12 ~ '13]
  • 2.3. Global LIB Cathode Material Demand by Cell Maker['12 ~ '13]
  • 2.4. Cathode Material Consumption Analysis- SDI['12 ~ '13]
    • 2.4.1. Breakdown by Supplier
  • 2.5. Cathode Material Consumption Analysis- LGC ['12 ~ '13]
    • 2.5.1. Breakdown by Supplier
  • 2.6. Cathode Material Consumption Analysis- Panasonic ['12 ~ '13]
    • 2.6.1. Breakdown by Supplier
  • 2.7. Cathode Material Consumption Analysis- AESC ['12 ~ '13]
    • 2.7.1. Breakdown by Supplier
  • 2.8. LIB Cathode Material Sales by Supplier['13]
    • 2.8.1. LCO Sales by Supplier
    • 2.8.2. NCM Sales by Supplier
    • 2.8.3. NCA Sales by Supplier
  • 2.9. Changes in Cathode Material Consumption by Type ['12 ~ '13]
    • 2.9.1. Change in Cathode Material Consumption by Type- Samsung SDI
    • 2.9.2. Change in Cathode Material Consumption by Type- LGC
    • 2.9.3. Change in Cathode Material Consumption by Type- Panasonic
    • 2.9.4. Change in Cathode Material Consumption by Type- AESC
  • 2.10. Materials Cost by Type [$/kg]

3. Challenges of High Voltage LIB Cathode Materials

  • 3.1. Requirements for LIB Cathode Materials
  • 3.2. Key Properties of LIB Cathode Materials
    • 3.2.1. Charge/Discharge Curves of the Most Common Cathode Materials
  • 3.3. Layered Cathode Materials [1]
    • 3.3.1. LMO2
    • 3.3.2. High Voltage Cycling Performance of LMO2
    • 3.3.3. High Voltage Cycling Performance Degradation of LMO2
  • 3.4. Layered Cathode Materials [2]
    • 3.4.1. LMM'M"O2
    • 3.4.2. HR-TEM after High Voltage Cycling Performance Test[4.5~4.8]
    • 3.4.3. Optimum LMM'M"O2 Composition Design
  • 3.5. Layered Cathode Materials[3]
    • 3.5.1. Cycling Performance Depending on Ni Content
    • 3.5.2. Coin Cell Performance at Room- and High-Temperature

4. Proposal for Development of High Voltage Cathode Materials

  • 4.1. First Proposal for Development of High Voltage Cathode Materials [Surface Treatment with Metal Oxides]
    • 4.1.1. Development Concept
    • 4.1.2. Coin Cell Performance before & after Surface Treatment
    • 4.1.3. SIMMS Analysis for Doping and Surface Treatment Materials
    • 4.1.4. Coin Cell Cycle Life at High Voltage Charging
    • 4.1.5. Comparison of Heat Flow DSC between Charged Plates
    • 4.1.6. 18650 Cycle Lite Test
    • 4.1.7. Low-Temperature [-20oC] Discharge Performance of 18650 Cell
    • 4.1.8. Cycle Life and DSC of Coin Cell after Surface Treatment with Ni[90%] Cathode Material
  • 4.2. Second Proposal for Development of High Voltage Cathode Materials [Surface Treatment of Metal Halide]
    • 4.2.1. Development Concept
    • 4.2.2. Coin Cell Performance before & after Surface Treatment
    • 4.2.3. XRD Crystal Structure and TEM Image
    • 4.2.4. Coin Cell Cycling Performance before & after Surface Treatment of Various Cathode Materials
    • 4.2.5. Full Cell Cycle Life Performance of NCM11 at High Voltage Charge
    • 4.2.6. HR-TEM Image after Surface Treatment
    • 4.2.7. DSC Thermal Stability of Various Cathode Materials before & after Surface Treatment
    • 4.2.8. In-situ XRD of NCM 11 before & after Surface Treatment
    • 4.2.9. High Temp. in-situ XRD of NCM111 before & after Surface Treatment
  • 4.3. Third Proposal for Development of High Voltage Cathode Materials [Surface Treatment- Metal Hydroxide]
    • 4.3.1. Development Concept
    • 4.3.2. Coin Cell Cycling Performance after Surface Treatment with Metal Oxide and Metal Hydroxide [4.3V]
    • 4.3.3. Coin Cell Cycling Performance after Surface Treatment with Metal Hydroxide [4.4, 4.5V]
    • 4.3.4. Coin Cell C-rate after Surface Treatment with Metal Hydroxide [4.4, 4.5V]
    • 4.3.5. Coin Cell Cycle Life after Surface Treatment with Metal Hydroxide[4.4, 4.5V]
    • 4.3.6. Full Cell Cycling Performance after Surface Treatment with Metal Oxide and Metal Hydroxide
    • 4.3.7. Changes in Full Cell Mid Point Potential after Surface Treatment with Metal Oxide and Metal Hydroxide
    • 4.3.8. Full Cell 85oC Swelling after Surface Treatment with Metal Oxide and Metal Hydroxide
    • 4.3.9. Full Cell C-rate Capability after Surface Treatment with Metal Hydroxide
    • 4.3.10. Full Cell Top 8 Safety Test Result after Surface Treatment with Metal Hydroxide
    • 4.3.11. High Temperature Cycle Life and C-rate of Ni[70%] Cathode Material after Surface Treatment with Metal Hydroxide
    • 4.3.12. Room Temperature Cycle Life of NCM 622 after Surface Treatment with Metal Hydroxide
    • 4.3.13. High Temperature Cycle Life of LMO after Surface Treatment with Metal Hydroxide
  • 4.4. Fourth Proposal for Development of High Voltage Cathode Materials [Surface Treatment with Conductor]
    • 4.4.1. Development Concept
    • 4.4.2. Electrode Manufacturing Process
    • 4.4.3. Morphology of Pole Plate and Conductor-Coated Cathode Material
    • 4.4.4. Electrode Density under Varying Conditions
    • 4.4.5. Coin Cell C-rate with Varying Conductor Content
    • 4.4.6. Cycle Life of Prismatic Batteries after Surface Treatment with Conductor
    • 4.4.7. Low Temperature Performance of Prismatic Batteries after Surface Treatment with Conductor

5. Summary and Implications

  • 5.1. Summary
  • 5.2. Implications
Back to Top