Cover Image
市場調查報告書

鋰離子電池:市場發展、原材料

Lithium-ion Batteries: Market Development & Raw Materials

出版商 Roskill Information Services 商品編碼 422570
出版日期 內容資訊 英文 269 Pages, 9 Chapters, 66 Tables, 145 Figures
商品交期: 最快1-2個工作天內
價格
Back to Top
鋰離子電池:市場發展、原材料 Lithium-ion Batteries: Market Development & Raw Materials
出版日期: 2016年12月28日 內容資訊: 英文 269 Pages, 9 Chapters, 66 Tables, 145 Figures
簡介

本報告調查分析全球鋰離子電池市場現況及展望,提供產業結構、按各區分的發展趨勢、材料趨勢、地區趨勢、技術趨勢、及主要企業簡介等系統性情報。

第1章 摘要整理

第2章 鋰離子電池:型態、內容、產業結構

  • 電池基礎:什麼是電池?
  • 關鍵電池性能參數
  • 鋰離子電池種類與結構
  • 電池材料與機能
  • 製造製程與價值鏈
  • 鋰離子電池價值鏈之附加價值

第3章 鋰離子電池市場區分與發展

  • 所有末端用途
    • 概要
    • 鋰離子及其他可充電電池
    • 大綱區分與鋰離子的成長
  • 可攜式電子產品與售後市場
    • 概要
    • 電話
    • 筆記型電腦與平板電腦
    • 其他可攜式電子產品
    • 售後市場
    • 可攜式電子產品市場地區
  • 電源設備、原動機、其他
    • 概要
    • 電力工具
    • E-bike
    • 其他應用
  • ESS市場
    • 概要
    • 通信網路
    • UPS (不斷電設備)
    • 電網儲存:概要
    • 電網儲存:鋰離子替代
    • 電網儲存:子市場
    • 電網儲存:鋰離子電池性能
    • 住宅、商業用儲能
    • ESS、其他產業市場的地區焦點
  • 汽車市場
    • 電動車類型
    • 早期市場發展
    • 市場發展

第4章 區分與發展

  • 所有末端用途
    • 末段市場表現
    • 充電電池使用程度
    • 鋰離子電池的普及
    • 鋰離子市場摘要
    • 地區側面
  • 可攜式電子產品、售後市場
  • 電力設備、原動機、其他
  • ESS市場
    • 通信、UPS市場
    • 電網儲存:概要
    • 電網儲存:市場成長
    • 住宅用、商業用ESS
    • ESS及其他產業市場的地區焦點
  • 汽車市場
    • 市場成長決定要素
    • 市場預測

第5章 鋰離子電池業務的企業與地區

  • 概要
  • 陰極材料企業
  • 陽極材料企業
  • 電解質企業
  • 分離器企業
  • 其他材料企業
  • 電池企業
  • 電池及電池組企業

第6章 企業及地區

  • 概要
  • 電池
  • 電池材料

第7章 市場規模 (金額)、材料內容、材料規模(金額) 趨勢

  • 市場規模(金額) 與價格
  • 材料內容概要
  • 陰極材料
    • 電池化學趨勢
    • 活性陰極材料
  • 陽極材料
    • 產品
    • 趨勢
  • 非活性電池材料
    • 產品
    • 趨勢
  • 鋰離子電池的非鐵金屬、礦物
  • 材料、製造規模 (金額)
    • 電池材料、規模
    • 電池製造成本
    • 電池組製造成本
    • 汽車用電池

第8章 現行和新興技術趨勢及其影響

  • 改善預測
    • 概要
    • 能量密度趨勢預測
  • 鋰離子電池改善方法
    • 性能與安全性之間的平衡
    • 改善能源密度的策略
    • 陰極材料
    • 陽極材料
    • 其他材料與電池設計
    • 電池組設計
    • 材料、設計改善的影響
  • 替代電池類型
    • 鋰硫電池
    • 鎂離子電池
    • 鈉離子電池
    • 鋰空氣電池
    • 其他金屬空氣電池
    • 鋰金屬聚合物電池
    • 其他ESS市場解決方案

第9章 鋰離子電池及非鐵金屬、礦物

  • 概要
    • 鋰離子電池中使用鋁的概要
    • 鋁的供應
    • 鋁的需求
    • 鋁產業結構
    • 鋁市場表現與展望
    • 使用鋰離子電池的鋁的型態
    • 鋰離子電池中鋁材料的市場動態
  • 石墨

第10章 附錄:企業簡介

圖表

目錄
Product Code: ISBN: 978 1 910922 19 4

Report includes:

  • Analysis report with forecasts to 2025
  • Further background data available on request
  • Hard copy and electronic PDF of the report
  • Access to the analysts for discussion around report content

The lithium-ion battery industry has had a transformatory effect on several metal and mineral raw material markets over the last two decades. For example, in 2015, 46% of cobalt and 32% of lithium was destined for the lithium-ion battery market, compared to small percentages at the start of the millennium. Whilst other raw materials like graphite at 4%, or nickel, manganese, copper and aluminium at around or below 1%, have not been as impacted overall, certain variants, like nickel hydroxide or manganese sulphate, and forms, such as copper foil or spherical graphite, have seen structural changes. The raw and intermediate product landscape is expected to evolve further over the next decade, as lithium-ion batteries transition from low power simple cells to complex packs of varying chemistry, with implications for materials and companies in the value chain.

Lithium-ion batteries are a complicated assemblage of materials, with metal and mineral use highest in the active cathode material, active anode material, collectors and cell hardware parts. Chemicals and plastics are more intensively used in binders, solvents, electrolytes (salts and solutions) and separators, but additives such as lithium hexafluorphosphate creep in to provide vital functions. Internally, the chemistry of lithium-ion batteries has changed since the early lithum-cobalt- oxide cathodes paired to graphite anodes popular in cell phones. Complex multi-metal cathodes have become standard for new applications, such as lithium-nickel-cobalt-aluminium-oxide paired to silicon-doped blended graphite anodes in electric vehicles or lithium-iron-phosphate cathodes paired to lithium-titanium-oxide anodes for energy storage systems. A change in cell formats - from cylinders, to prismatic, to pouches - responding to the needs of final product designers has also impacted raw material use. The internal contents and external form is expected to continue evolving.

This NEW report from Roskill provides raw material producers with insight into the workings of the lithium-ion battery industry. It also provides intermediary material and battery manufacturers with abridged information on the upstream landscape. The report is based on Roskill's 50 years in analysing metal and mineral markets.

Table of Contents

1. Executive summary

  • 1.1. Lithium-ion batteries
  • 1.2. The markets
  • 1.3. Supply chain and the companies
  • 1.4. Industry economics
  • 1.5. Nonferrous metals and minerals

2. The Li-ion battery: form, content and industry structure

  • 2.1. Battery basics: what is a battery?
  • 2.2. Key battery performance parameters
    • 2.2.1. Primary and secondary batteries
    • 2.2.2. Secondary batteries compared
  • 2.3. Li-ion battery types and construction
    • 2.3.1. Anatomy of a Li-ion battery cell: an outline
    • 2.3.2. Alternative battery cell formats
    • 2.3.3. Battery modules and packs
  • 2.4. Battery materials and functions
    • 2.4.1. Electrodes
    • 2.4.2. Active cathode materials
    • 2.4.3. Active anode materials
    • 2.4.4. Collector materials
    • 2.4.5. Binder, solvents and additives
    • 2.4.6. Electrolytes
    • 2.4.7. Separator materials
    • 2.4.8. Other battery cell materials
    • 2.4.9. From components to finished battery
    • 2.4.10. Battery module and pack materials
  • 2.5. Manufacturing processes and the value chain
    • 2.5.1. From raw material to precursor and part processed products
    • 2.5.2. From raw material and part processed products to finished cell material
    • 2.5.3. From finished cell material to assembled cell
    • 2.5.4. From assembled cell to pack and on to customers
  • 2.6. Value addition in the Li-ion battery value chain

3. Li-ion battery market segmentation and development to 2015

  • 3.1. All end uses
    • 3.1.1. Overview
    • 3.1.2. Li-ion and other rechargeable batteries
    • 3.1.3. Outline segmentation and growth in Li-ion
  • 3.2. Portable electronics and the aftermarket
    • 3.2.1. Overview
    • 3.2.2. Phones
    • 3.2.3. Laptops and tablets
    • 3.2.4. Other portable electronics
    • 3.2.5. The aftermarket
    • 3.2.6. Portable electronics market geography
  • 3.3. Power devices, motive and miscellaneous markets
    • 3.3.1. Overview
    • 3.3.2. Power tools
    • 3.3.3. E-bikes
    • 3.3.4. Other applications
  • 3.4. ESS markets
    • 3.4.1. Overview
    • 3.4.2. Telecom networks
    • 3.4.3. Uninterruptible power supply
    • 3.4.4. Electricity grid storage - overview
    • 3.4.5. Electricity grid storage - Li-ion alternatives
    • 3.4.6. Electricity grid storage - sub-markets
    • 3.4.7. Electricity grid storage - Li-ion battery performance
    • 3.4.8. Residential and commercial energy storage
    • 3.4.9. Geographical focus of ESS and other industrial markets
  • 3.5. Automotive market
    • 3.5.1. Types of electric vehicle
    • 3.5.2. Early market development
    • 3.5.3. Market development to 2015

4. Segmentation and development to 2025

  • 4.1. All end uses
    • 4.1.1. End market performance
    • 4.1.2. Intensity of use of rechargeable batteries
    • 4.1.3. Li-ion battery penetration
    • 4.1.4. Li-ion market summary
    • 4.1.5. The geographical dimension
  • 4.2. Portable electronics and the aftermarket
  • 4.3. Power devices, motive and miscellaneous
  • 4.4. ESS markets
    • 4.4.1. Telecom and UPS markets
    • 4.4.2. Electricity grid storage - overview
    • 4.4.3. Electricity grid storage - market growth
    • 4.4.4. Residential and commercial ESS
    • 4.4.5. Geographical focus of ESS and other industrial markets
  • 4.5. Automotive markets
    • 4.5.1. Factors determining market growth
    • 4.5.2. Market forecast to 2025

5. Companies and geography in the Li-ion battery business to 2015

  • 5.1. Overview
    • 5.1.1. General points
    • 5.1.2. Battery and battery materials output by region
  • 5.2. Cathode materials companies
    • 5.2.1. Overview
    • 5.2.2. Japanese cathode materials companies
    • 5.2.3. Korean cathode materials companies
    • 5.2.4. Chinese cathode materials companies
  • 5.3. Anode materials companies
    • 5.3.1. Overview
    • 5.3.2. Chinese anode materials companies
    • 5.3.3. Japanese anode materials companies
    • 5.3.4. Korean anode materials companies
    • 5.3.5. Other anode materials companies
    • 5.3.6. Anode material specialists
  • 5.4. Electrolyte companies
    • 5.4.1. Overview
    • 5.4.2. Electrolyte salts companies
    • 5.4.3. Electrolyte solution companies
  • 5.5. Separator companies
    • 5.5.1. Overview
    • 5.5.2. Japanese separator companies
    • 5.5.3. Korean separator companies
    • 5.5.4. Chinese separator companies
    • 5.5.5. Other separator companies
  • 5.6. Other materials companies
    • 5.6.1. Binders companies
    • 5.6.2. Copper collector companies
    • 5.6.3. Aluminium collector companies
  • 5.7. Battery companies
    • 5.7.1. Battery output by region
    • 5.7.2. Japanese battery companies
    • 5.7.3. Korean battery companies
    • 5.7.4. Chinese battery companies
  • 5.8. Battery and battery pack companies
    • 5.8.1. Changing structure of the battery industry
    • 5.8.2. Focus on the emerging ESS market

6. Companies and geography to 2025

  • 6.1. Overview
  • 6.2. Batteries
    • 6.2.1. Overview
    • 6.2.2. Automotive markets
    • 6.2.3. The ESS market
    • 6.2.4. Other battery location changes
  • 6.3. Battery materials
    • 6.3.1. Overview
    • 6.3.2. Cathode materials
    • 6.3.3. Anode materials
    • 6.3.4. Electrolyte
    • 6.3.5. Separators
    • 6.3.6. Other materials

7. Trend in market value, materials content and materials value

  • 7.1. Market value and pricing
  • 7.2. Materials content overview
    • 7.2.1. Overview
  • 7.3. Cathode materials
    • 7.3.1. Trends in battery chemistry to 2015
    • 7.3.2. Trends in battery chemistry to 2025
    • 7.3.3. Active cathode materials to 2015
    • 7.3.4. Active cathode materials to 2025
  • 7.4. Anode materials
    • 7.4.1. The products
    • 7.4.2. The trends
  • 7.5. Non-active cell materials
    • 7.5.1. The products
    • 7.5.2. The trends
  • 7.6. Non-ferrous metals and minerals in Li-ion batteries
  • 7.7. Materials and manufacturing value
    • 7.7.1. Cell materials and value
    • 7.7.2. Cell manufacturing costs
    • 7.7.3. Pack manufacturing costs
    • 7.7.4. Automotive batteries

8. Current and emerging technology trends and their implications

  • 8.1. The Anticipated Improvements
    • 8.1.1. Overview
    • 8.1.2. Forecast trend in energy density
  • 8.2. How to improve Li-ion batteries
    • 8.2.1. The balance between performance and safety
    • 8.2.2. Strategies to improve energy density
    • 8.2.3. Cathode materials
    • 8.2.4. Anode materials
    • 8.2.5. Other materials and cell design
    • 8.2.6. Pack design
    • 8.2.7. Net effect of materials and design improvement
  • 8.3. Alternative battery types
    • 8.3.1. Overview
    • 8.3.2. Lithium sulphur batteries
    • 8.3.3. Magnesium ion batteries
    • 8.3.4. Sodium ion batteries
    • 8.3.5. Lithium air batteries
    • 8.3.6. Other metal air batteries
    • 8.3.7. Lithium metal polymer batteries
    • 8.3.8. Other ESS market solutions

9. Li-ion batteries and non-ferrous metals and minerals

  • 9.1. Overview
  • 9.2. Aluminium
    • 9.2.1. Overview of aluminium use in Li-ion batteries
    • 9.2.2. Aluminium supply
    • 9.2.3. Aluminium demand
    • 9.2.4. Aluminium industry structure
    • 9.2.5. Aluminium market performance and prospects
    • 9.2.6. Forms of aluminium used in Li-ion batteries
    • 9.2.7. Market dynamics of aluminium materials in Li-ion batteries
  • 9.3. Cobalt
    • 9.3.1. Overview of cobalt use in Li-ion batteries
    • 9.3.2. Cobalt supply
    • 9.3.3. Cobalt demand
    • 9.3.4. Cobalt industry structure
    • 9.3.5. Cobalt market performance and prospects
    • 9.3.6. Forms of cobalt used in Li-ion batteries
    • 9.3.7. Market dynamics of cobalt materials in Li-ion batteries
  • 9.4. Copper
    • 9.4.1. Overview of copper use in Li-ion batteries
    • 9.4.2. Copper supply
    • 9.4.3. Copper demand
    • 9.4.4. Copper industry structure
    • 9.4.5. Copper market performance and prospects
    • 9.4.6. Forms of copper used in Li-ion batteries
    • 9.4.7. Market dynamics of copper materials in Li-ion batteries
  • 9.5. Graphite
    • 9.5.1. Overview of graphite use in Li-ion batteries
    • 9.5.2. Graphite supply
    • 9.5.3. Graphite demand
    • 9.5.4. Graphite industry structure
    • 9.5.5. Graphite market performance and prospects
    • 9.5.6. Forms of graphite used in Li-ion batteries
    • 9.5.7. Market dynamics of graphite in Li-ion batteries
  • 9.6. Lithium
    • 9.6.1. Overview of lithium use in Li-ion batteries
    • 9.6.2. Lithium supply
    • 9.6.3. Lithium demand
    • 9.6.4. Lithium industry structure
    • 9.6.5. Lithium market performance and prospects
    • 9.6.6. Forms of lithium used in Li-ion batteries
    • 9.6.7. Market Dynamics of Lithium Materials in Li-ion Batteries
  • 9.7. Manganese
    • 9.7.1. Overview of manganese use in Li-ion batteries
    • 9.7.2. Manganese supply
    • 9.7.3. Manganese demand
    • 9.7.4. Manganese industry structure
    • 9.7.5. Manganese market performance and prospects
    • 9.7.6. Forms of manganese used in Li-ion batteries
    • 9.7.7. Market dynamics of manganese materials in Li-ion batteries
  • 9.8. Nickel
    • 9.8.1. Overview of nickel use in Li-ion batteries
    • 9.8.2. Nickel supply
    • 9.8.3. Nickel demand
    • 9.8.4. Nickel industry structure
    • 9.8.5. Nickel market performance and prospects
    • 9.8.6. Forms of nickel used in Li-ion batteries
    • 9.8.7. Market dynamics of nickel materials in Li-ion batteries

10. Appendix: Company profiles

  • 10.1. Profile formats
  • 10.2. 3M Company
  • 10.3. AESC
  • 10.4. AGC Seimi
  • 10.5. ALEES
  • 10.6. Asahi Kasei
  • 10.7. ATL
  • 10.8. B & M
  • 10.9. BAK
  • 10.10. BASF
  • 10.11. Boston Power
  • 10.12. BTR New Energy Materials
  • 10.13. BYD
  • 10.14. CALB
  • 10.15. Cangzhou Mingzhu Plastic
  • 10.16. Shenzhen Capchem
  • 10.17. Central Glass
  • 10.18. CITIC Guoan Mengguli
  • 10.19. Coslight
  • 10.20. Luoyang Daye
  • 10.21. Do-Fluoride Chemicals
  • 10.22. DOW Chemical
  • 10.23. Easpring
  • 10.24. Ecopro
  • 10.25. Entek
  • 10.26. Foosung
  • 10.27. Formosa
  • 10.28. Furukawa Electric
  • 10.29. G.S. Yuasa
  • 10.30. Xinxiang Green New Energy
  • 10.31. Guoxuan
  • 10.32. Zhangjiagang Guotai-Huarong
  • 10.33. Hitachi Chemical
  • 10.34. Hitachi Maxell
  • 10.35. Iljin Materials
  • 10.36. Imerys
  • 10.37. JFE Chemical
  • 10.38. JGC Catalysts & Chemicals
  • 10.39. Jien Nickel
  • 10.40. Ningbo Jinhe
  • 10.41. Foshan Jinhui
  • 10.42. Tianjin Jinniu
  • 10.43. Jiangsu Juijiujiu
  • 10.44. Johnson Matthey
  • 10.45. Kanto Denko
  • 10.46. Kureha
  • 10.47. L & F
  • 10.48. LS Mtron
  • 10.49. LG Chem
  • 10.50. Lingbao Wason
  • 10.51. Lishen
  • 10.52. Microvast
  • 10.53. Mitsubishi Chemical
  • 10.54. Mitsui Chemical
  • 10.55. Mitsui Mining & Smelting
  • 10.56. Morgan Hairong
  • 10.57. Morita Chemical
  • 10.58. Zhejiang Nanyang Technology
  • 10.59. Nichia Corp
  • 10.60. Nihon Kagaka Sanyo
  • 10.61. JX Nippon
  • 10.62. Nippon Carbon
  • 10.63. Nippon Denkai
  • 10.64. Nippon Denko
  • 10.65. OptimumNano
  • 10.66. Panasonic
  • 10.67. PANAX-Etec
  • 10.68. POSCO
  • 10.69. PULEAD
  • 10.70. Qianyun
  • 10.71. Reshine
  • 10.72. Samsung SDI
  • 10.73. Shenzhen Senior
  • 10.74. SGL
  • 10.75. Shanshan
  • 10.76. Shinzoom
  • 10.77. Showa Denko
  • 10.78. Sinochem Lantian
  • 10.79. SINOMA
  • 10.80. SK Group
  • 10.81. Shenzhen Sinuo
  • 10.82. Smoothway Electronic Materials
  • 10.83. Solvay
  • 10.84. Sony
  • 10.85. Soulbrain
  • 10.86. Stella Chemifa
  • 10.87. STL Technology
  • 10.88. Sumitomo Chemical
  • 10.89. Sumitomo Metal Mining
  • 10.90. Tanaka Chemical
  • 10.91. Tesla
  • 10.92. Tianke Technology
  • 10.93. Tinci Materials
  • 10.94. Toda Kogyo (BASF)
  • 10.95. Tomiyama
  • 10.96. Tonze Electrical
  • 10.97. Toray
  • 10.98. UACJ
  • 10.99. UBE
  • 10.100. Umicore
  • 10.101. W-Scope
  • 10.102. Wanxiang A123
  • 10.103. Xiamen Tungsten
  • 10.104. Henan Yiteng
  • 10.105. Jiangxi Zhengtuo
  • 10.106. Zhuoneng
  • 10.107. Jiangxi Zichen

List of Tables

  • Table 1: Typical Performance of Rechargeable Batteries
  • Table 2: Tensile strength
  • Table 3: Materials comparison
  • Table 4: Rechargeables market apportionment, 2000-2015
  • Table 5: Li-ion battery market apportionment by region, 2000-2015
  • Table 6: Li-ion in portable equipment and the aftermarket, 2000-2015
  • Table 7: Li-ion portable equipment market by region, 2000-2015
  • Table 8: Li-ion in power devices, motive & other applications, 2000-2015
  • Table 9: Electrical grid installation technologies compared
  • Table 10: Li-ion in the ESS market, 2000-2015
  • Table 11: Li-ion in the Automotive Market, 2000-2015
  • Table 12: Rechargeables market apportionment, 2010-2025
  • Table 13: Li-ion battery market apportionment by region, 2010-2025
  • Table 14: Li-ion in portable equipment and aftermarket, 2010-2025
  • Table 15: Portable equipment Li-ion battery market by region, 2010-2025
  • Table 16: Li-ion in power devices, motive and other applications, 2010-2025
  • Table 17: Li-ion in the ESS market, 2010-2025
  • Table 18: Li-ion power devices, motive, ESS and aftermarket by region, 2010-2025
  • Table 19: xEV passenger vehicle sales by region, 2010-2025
  • Table 20: Li-ion in the automotive market, 2010-2025
  • Table 21: Automotive Li-ion battery market by region, 2010-2025
  • Table 22: Battery Materials output by type and region, 2000-2015
  • Table 23: Capacity of cathode materials producers based in Japan and Korea end-2016
  • Table 24: Capacity of cathode materials producers based in other countries end-2015
  • Table 25: Total anode materials capacity by company end-2015
  • Table 26: Electrolyte salts capacity by company end-2015
  • Table 27: Electrolyte solution capacity by company end-2015
  • Table 28: Separator capacity by company end-2015
  • Table 29: Battery output by different measures by region, 2000-2015
  • Table 30: Battery capacity by company in Japan and Korea end-2015
  • Table 31: Battery capacity by company in China and rest of the world end-2015
  • Table 32: Battery output by different measures by region, 2010-2025
  • Table 33: Battery materials output by region, 2010-2025
  • Table 34: Li-ion battery market value and ratios, 2010-2025
  • Table 35: Cell and pack value by sector, 2010-2025
  • Table 36: Portable electronics market value and ratios, 2010-2025
  • Table 37: Industrial & other markets value and ratios, 2010-2025
  • Table 38: Automotive market value and ratios, 2010-2025
  • Table 39: Li-ion market development by battery chemistry, 2010-2025
  • Table 40: Apportionment of materials use by cathode type
  • Table 41: Active materials used in cathode, 2010-2025
  • Table 42: Natural flake graphite categories
  • Table 43: Active materials used in anode, 2010-2025
  • Table 44: Non-active cell materials, 2010-2025
  • Table 45: Non-ferrous metals and minerals at cell and pack level, 2010-2025
  • Table 46: Total market materials and manufacturing value, 2010-2025
  • Table 47: Samsung SDI Ulsan xEV battery assembly line plan, 2020
  • Table 48: Automotive market materials and manufacturing value, 2010-2025
  • Table 49: Weight reduction in the smartbatt battery pack
  • Table 50: Aluminium use in and with Li-ion batteries, 2005-2025
  • Table 51: Li-ion batteries and the aluminium market, 2010-2025
  • Table 52: Cobalt use by Li-ion cathode type and application, 2005-2025
  • Table 53: Li-ion batteries and the cobalt market, 2010-2025
  • Table 54: Copper use in and with Li-ion batteries, 2005-2025
  • Table 55: Li-ion batteries and the copper market, 2010-2025
  • Table 56: Anode materials used in Li-ion and other batteries, 2005-2025
  • Table 57: All graphite (crude) use in batteries, 2005-2025
  • Table 58: Li-ion batteries and the graphite market, 2010-2025
  • Table 59: Lithium used in all batteries, 2005-2025
  • Table 60: Li-ion batteries and the lithium market, 2010-2025
  • Table 61: Lithium in Li-ion batteries by end use, 2005-2025
  • Table 62: Manganese use by Li-ion cathode type and application, 2005-2025
  • Table 63: Li-ion batteries and the manganese market, 2010-2025
  • Table 64: Nickel use by Li-ion cathode type and application, 2005-2025
  • Table 65: Nickel used in all rechargeable batteries, 2005-2025
  • Table 66: Li-ion batteries and the nickel market, 2010-2025
  • List of Figures
  • Figure 1: Rechargeable battery market share and growth in addressable markets, 2000-2015
  • Figure 2: Li-ion battery market in 2015 and trend 2000-2025
  • Figure 3: Alternative Li-ion battery market forecasts
  • Figure 4: Battery and battery materials output by region in 2015 and 2025
  • Figure 5: Materials and manufacturing cost apportionment (2015)
  • Figure 6: Non-ferrous metals & minerals and other materials use by battery part
  • Figure 7: Metals & minerals use growth 2015 to 2025 under alternative forecast scenarios
  • Figure 8: Working principles of a rechargeable Li-ion battery
  • Figure 9: Energy density comparison of rechargeable and non-rechargeable batteries
  • Figure 10: Specific energy and energy density range of current and emerging
  • rechargeable battery types
  • Figure 11: Schematic of a single cylindrical Li-ion battery cell
  • Figure 12: A prismatic Li-ion battery cell
  • Figure 13: A Li-ion pouch cell
  • Figure 14: Schematic emphasising cathode and anode materials in a battery cell
  • Figure 15: Crystalline structures of actual and potential lithium-based cathode materials
  • Figure 16: Active cathode material shares in 2015
  • Figure 17: Energy of Li-ion and other rechargeable battery types
  • Figure 18: LCO battery cell performance characteristics
  • Figure 19: Performance characteristics of Li-ion batteries other than LCO
  • Figure 20: Characteristics of the main Li-ion battery types
  • Figure 21: Anode Materials Shares in 2015
  • Figure 22: Flake graphite and the processed product, spherical graphite
  • Figure 23: Carbon-based anode materials performance comparison
  • Figure 24: Carbon-based anode materials performance comparison
  • Figure 25: Li-ion battery copper and aluminium collector foils
  • Figure 26: Elongation and adhesion of battery copper foil
  • Figure 27: Binder materials schematic
  • Figure 28: Drums of electrolyte
  • Figure 29: Separator materials requirements
  • Figure 30: From components through to finished battery
  • Figure 31: Hierarchy of battery pack assembly of a large Li-ion battery
  • Figure 32: Various busbars and connectors
  • Figure 33: Module assembly with cylindrical cells
  • Figure 34: Assembled pack with associated electronics
  • Figure 35: LG Chem vehicle Li-ion battery management system functions
  • Figure 36: Elements in the battery supply chain
  • Figure 37: from raw material to precursor and part processed products
  • Figure 38: From raw and part processed products to finished cell material
  • Figure 39: From finished cell material to assembled cell
  • Figure 40: Process flow & capital cost for electrode preparation and cell assembly
  • Figure 41: From assembled cell to pack to Tier 1 supplier, OEM and installer
  • Figure 42: Materials and manufacturing cost apportionment (2015)
  • Figure 43: Rechargeable battery growth by application, 2000-2015
  • Figure 44: Rechargeable battery market share and growth, 2000-2015
  • Figure 45: Li-ion battery market apportionment by sector in 2015
  • Figure 46: Li-ion battery market apportionment by region, 2000-2015
  • Figure 47: Li-ion portable equipment and aftermarket apportionment by sector in 2015
  • Figure 48: Portable electronics market by product group, 2000-2015
  • Figure 49: Li-ion power devices, motive and other applications by sector in 2015
  • Figure 50: The roles of storage and generation in the electricity network
  • Figure 51: Grid installed power shares 2012-2016 by technology (excl. pumped hydro)
  • Figure 52: Li-ion ESS market apportionment by sector in 2015
  • Figure 53: Li-ion power devices, motive, ESS and aftermarket by region, 2000-2015
  • Figure 54: Types of xEV
  • Figure 55: Battery capacity of PHEVs and BEVs sold in the United States (2014)
  • Figure 56: Evolution of PHEV battery pack energy density and cost (USA), 2008-2022
  • Figure 57: Summary of policy support for xEVs in selected countries (2015)
  • Figure 58: xEV automotive market penetration by region, 2005-2015
  • Figure 59: Li-ion automotive market apportionment by sector in 2015
  • Figure 60: Li-ion automotive market by region, 2010-2015
  • Figure 61: Growth in share of Li-ion by market sector, 2000-2024
  • Figure 62: Rechargeable battery growth by application, 2010-2025
  • Figure 63: Li-ion battery market apportionment by region, 2010-2025
  • Figure 64: Li-ion portable equipment and aftermarket, 2010-2025
  • Figure 65: Penetration of mobile phones and smart phones in 2015
  • Figure 66: Portable equipment Li-ion battery market by region, 2010-2025
  • Figure 67: Li-ion in power devices, motive and other applications, 2010-2025
  • Figure 68: Electricity grid storage market apportionment in 2025
  • Figure 69: A schematic of a solar plus storage ecosystem
  • Figure 70: Li-ion in the ESS market, 2010-2025
  • Figure 71: Li-ion power devices, motive, ESS and aftermarket by region, 2010-2025
  • Figure 72: Emissions targets in major countries and regions, 2010-2025
  • Figure 73: Li-ion in the automotive market, 2010-2025
  • Figure 74: Automotive Li-ion battery market by region, 2010-2025
  • Figure 75: Battery materials output by type and region in 2015
  • Figure 76: Total battery materials output by region, 2000-2015
  • Figure 77: Total cathode materials market share by company in 2015
  • Figure 78: Cathode materials market share by type and company in 2015
  • Figure 79: Total anode materials market share by company in 2015
  • Figure 80: Electrolyte salts share by company in 2015
  • Figure 81: Electrolyte solution share by company in 2015
  • Figure 82: Separator share by company in 2015
  • Figure 83: Battery output by different measures by region in 2015
  • Figure 84: Battery output by region, 2000-2015
  • Figure 85: Total Li-ion battery market share by company in 2015 (by Value)
  • Figure 86: Li-ion battery share by format and company in 2015 (by Cell Numbers)
  • Figure 87: Battery output by different measures by region in 2015 and 2025
  • Figure 88: Battery output by region, 2010-2025
  • Figure 89: Battery materials output by type and region in 2015 and 2025
  • Figure 90: All battery materials output by region, 2010-2025
  • Figure 91: Trends in total pack value and price per kWh, 2000-2015
  • Figure 92: Li-ion market pack value by sector in 2015 and trend
  • Figure 93: Industrial & other markets value by sub-sector in 2015 and trend
  • Figure 94: Summary of non-ferrous metals and other products use by battery part
  • Figure 95: All materials in Li-ion battery cells in 2015
  • Figure 96: All materials in Li-ion battery cells, 2010-2025
  • Figure 97: Li-ion battery chemistry shares in 2015 and trend
  • Figure 98: Shares of battery chemistry by application in 2015 and 2025
  • Figure 99: Active materials used in Li-ion cathode in 2015
  • Figure 100: Main materials used in Li-ion cathode, 2010-2025
  • Figure 101: Active materials used in Li-ion anode in 2015
  • Figure 102: Non-active cell materials in 2015 and trend
  • Figure 103: Shares of materials and manufacturing value in 2015
  • Figure 104: Non active cell materials value in 2015
  • Figure 105: Price trends in key metals and minerals (Index), 2008-2025
  • Figure 106: Shares of total market materials and manufacturing value, 2010-2025
  • Figure 107: Cell manufacturing costs in 2015
  • Figure 108: Shares of automotive market materials and manufacturing value, 2010-2015
  • Figure 109: Forecast trend in Li-ion battery cell energy density, 2005-2025
  • Figure 110: Materials and safety in Li-ion batteries
  • Figure 111: A possible Li-ion battery materials roadmap (Avicienne), 2000-2030
  • Figure 112: Strategies to improve energy density (Umicore)
  • Figure 113: The electrical potential and capacity of anode materials
  • Figure 114: Target gains in xev battery cell energy density (Umicore)
  • Figure 115: Some higher energy density alternatives to Li-ion
  • Figure 116: Lithium sulphur battery schematic and problems to be addressed
  • Figure 117: Sodium ion battery schematic
  • Figure 118: Lithium air battery schematic
  • Figure 119: Lithium metal polymer battery schematic
  • Figure 120: Aluminium use in and with Li-ion batteries in 2015 and trend
  • Figure 121: Aluminium demand, market balance, stocks and price, 2010-2025
  • Figure 122: Aluminium supply, demand & balance - alternative scenarios, 2015-2025
  • Figure 123: Cobalt use in Li-ion batteries by cathode type in 2015 and trend
  • Figure 124: Cobalt use in Li-ion batteries by market sector in 2015 and trend
  • Figure 125: Cobalt demand, market balance, stocks and price, 2010-2025
  • Figure 126: Cobalt supply, demand & balance - alternative scenarios, 2015-2025
  • Figure 127: Copper use in and with Li-ion batteries in 2015 and trend
  • Figure 128: Copper demand, market balance, stocks and price, 2010-2025
  • Figure 129: Copper supply, demand & balance - alternative scenarios, 2015-2025
  • Figure 130: Materials used in Li-ion battery anode in 2015 and trend
  • Figure 131: Graphite use in all batteries in 2015 and trend, 2000-2025
  • Figure 132: Graphite demand, market balance, stocks and price, 2010-2025
  • Figure 133: Graphite supply, demand & balance - alternative scenarios, 2015-2025
  • Figure 134: Lithium use in all batteries in 2015 and trend
  • Figure 135: Lithium use in Li-ion batteries by market sector in 2015 and trend
  • Figure 136: Lithium demand, market balance, stocks and price, 2010-2025
  • Figure 137: Lithium supply, demand & balance - alternative scenarios, 2015-2025
  • Figure 138: Manganese use in Li-ion batteries by cathode type in 2015 and trend
  • Figure 139: Manganese use in Li-ion batteries by market sector in 2015 and trend
  • Figure 140: Manganese demand, market balance, stocks and price, 2010-2025
  • Figure 141: Manganese supply, demand & balance - alternative scenarios, 2015-2025
  • Figure 142: Nickel use in all batteries in 2015 and trend
  • Figure 143: Nickel use in Li-ion batteries by cathode type in 2015 and trend
  • Figure 144: Nickel demand, market balance, stocks and price, 2010-2025
  • Figure 145: Nickel supply, demand & balance - alternative scenarios, 2015-2025
Back to Top