Cover Image
市場調查報告書

高速通訊的MIMO所扮演的角色:技術、市場、用途

MIMO Role in High-speed Communications - Technologies, Markets and Applications

出版商 Practel, Inc. 商品編碼 572265
出版日期 內容資訊 英文 126 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
高速通訊的MIMO所扮演的角色:技術、市場、用途 MIMO Role in High-speed Communications - Technologies, Markets and Applications
出版日期: 2017年11月02日 內容資訊: 英文 126 Pages
簡介

本報告提供MIMO (Multiple Input Multiple Output) 型通信系統和其技術,及市場特徵的相關分析,MIMO的優點及各規格的規格,及主要企業的簡介與產品等相關彙整。

第1章 簡介

第2章 MIMO:概念,功能,及種類

  • 歷史
  • 概念:無線通訊的MIMO
  • MIMO的種類:實例
    • CoMP MIMO
    • Massive MIMO
    • MU-MIMO
    • MIMO-OFDM
    • Mobile Networked MIMO
    • MIMO - 通訊媒體的各類型
    • 摘要
  • MIMO的優點

第3章 MIMO所扮演的角色:無線通訊

  • LTE發展的MIMO所扮演的角色
    • Releases - 3GPP
    • LTE的計劃
    • 寬頻行動通訊 - 階段
    • LTE標準化 - 產業合作
    • 產業舉措
    • 智慧財產權
    • LTE的主要特徵
    • 詳細內容
    • LTE Advanced
    • SON
    • 語音支援
    • 市場
    • 摘要:主要的LTE的優點
    • 產業
    • LTE MIMO的規格
    • 5G NR及MIMO
  • 802.11ax 及 MIMO
    • 背景
    • 焦點
    • 主要的特徵
    • 主要用途
    • 物理等級
    • MAC
    • 802.11ax 行動方式
    • 產業
    • MIMO 及 802.11ac 規格
  • 802.11ah 及 MIMO的作用
    • 802.11ah (Wi-Fi HaLow)
    • 必要條件
    • 目標、計劃
    • 特徵
    • 利用案例
    • PHY
    • MAC等級
    • 摘要
    • 產業
    • 802.11ay 及 MIMO 技術
  • 802.11ay 及 MIMO 技術
    • 計劃
    • 範圍
    • 需求
    • 利用案例
    • 期待的特徵
    • MIMO:預備的見解

第4章 無線通訊的MIMO

  • HomePNA 及 ITU MIMO型技術
    • HomeGrid Forum
    • ITU G.hn
    • 產業
  • HomePlugAV2-mimo
    • 概要
    • 主要的改善點
    • 規格詳細內容
    • 產業

第5章 結論

目錄

This report researches advanced technologies and markets for wireless and wired communications systems that are supported by MIMO - Multiple Input/Multiple Output structures - to enhance their performance. It revises and updates earlier issues of the report as well as adds the analysis of latest technologies.

Users' demand for more efficient networking brought to life many technological innovations. One of them is MIMO, which became very popular in wireless systems - almost all recent and future 3GPP standards use (or will be using) variations of such a technique. MIMO also can be used in wireline systems.

This report is based on the Practel analysis of MIMO-based communications systems, their technologies and markets specifics. Particular, the following industry standards that utilize MIMO have been considered:

  • 3GPP LTE
  • IEEE802.11ax
  • IEEE802.11ay
  • IEEE 802.11ac
  • IEEE 802.11ah
  • HomePlug AV2
  • ITU G.hn.

The goal of this report is to characterize MIMO advantages and specifics for each standard. It also addresses market characteristics of discussed technologies. Report concentrates on profiling the industry players and their products.

MIMO characteristics, structures and types are also addressed and compared.

The report is written for a wide audience of managers and technical staff that involved in the design and implementation of advanced communications systems.

Table of Contents

1.0 Introduction

  • 1.1 General
  • 1.2 Goal
  • 1.3 Structure
  • 1.4 Research Methodology
  • 1.5 Target Audience

2.0 MIMO - Concept, Functions and Types

  • 2.1 History
  • 2.2 Concept: MIMO in Wireless Communications
  • 2.3 Types of MIMO: Examples
    • 2.3.1 CoMP MIMO
    • 2.3.2 Massive MIMO
    • 2.3.3 MU-MIMO
    • 2.3.4 MIMO-OFDM
    • 2.3.5 Mobile Networked MIMO
    • 2.3.6 MIMO - by Type of Communications Media
    • 2.3.7 Summary
  • 2.4 MIMO Benefits (Wireless Systems)

3.0 MIMO Role - Wireless Systems

  • 3.1 MIMO Role in LTE Development
    • 3.1.1 Releases - 3GPP
    • 3.1.2 LTE Timetable
    • 3.1.3 Broadband Mobile Communications-Phases
    • 3.1.4 LTE Standardization-Industry Collaboration
    • 3.1.5 Industry Initiative
    • 3.1.6 Intellectual Property
    • 3.1.7 Key Features of LTE
    • 3.1.8 Details
      • 3.1.8.1 Evolved UMTS Radio Access Network (EUTRAN)
      • 3.1.8.2 UE Categories
      • 3.1.8.3. Evolved Packet Core (EPC)
    • 3.1.9 LTE Advanced
    • 3.1.10 SON
    • 3.1.11 Voice Support
      • 3.1.11.1 VoLTE
    • 3.1.12 Market
      • 3.1.12.1 Drivers
      • 3.1.12.2 Demand: Wireless Broadband
      • 3.1.12.3 LTE Market Projections
    • 3.1.13 Summary: Major LTE Benefits
    • 3.1.14 Industry
      • Altair Semiconductor
      • Aricent
      • AceAxis
      • Cisco
      • CommAgility
      • Ericsson
      • Fujitsu
      • Huawei
      • Lime Microsystems
      • Motorola Solutions
      • Nokia
      • NXP (Qualcomm is in a process of acquiring NXP)
      • Qualcomm
      • Samsung
      • Sequans
      • Signalion
      • TI
      • U-blox
      • ZTE
    • 3.1.15 Specifics LTE MIMO
      • 3.1.15.1 Techniques
      • 3.1.15.2 Major Applications
      • 3.1.15.3 Modes
      • 3.1.15.4 MIMO: LTE Release 8
      • 3.1.15.5 MIMO: LTE Release 9
      • 3.1.15.6 MIMO: LTE Advanced
      • 3.1.15.7 LTE/LTE-A - MIMO Benefits
      • 3.1.15.8 Market Projections
    • 3.1.16 5G NR and MIMO
  • 3.2 802.11ax and MIMO
    • 3.2.1 Background
    • 3.2.2 Focal Points
    • 3.2.3 Major Features
    • 3.2.4 Major Applications
    • 3.2.5 Physical Layer
      • 3.2.5.1 Multi-User Operation
      • 3.2.5.2 Role of MU-MIMO
      • 3.2.5.3 Multi-User OFDMA
    • 3.2.6 MAC
      • 3.2.6.1 Spatial Reuse with Color Codes
      • 3.2.6.2 Power-saving with Target Wake Time
      • 3.2.6.3 Density
    • 3.2.7 802.11ax Operating Modes
    • 3.2.8 Industry
      • Asus
      • Broadcom
      • Huawei
      • Quantenna
      • Qualcomm
      • 3.3 MIMO Role in 802.11ac Development
      • 3.3.1 General - Improving 802.11n Characteristics
      • 3.3.2 Approval
      • 3.3.3 Major Features: Summary
      • 3.3.4 Major Benefits
      • 3.3.5 Usage Models
      • 3.3.6 Waves
      • 3.3.7 Market Projections
      • 3.3.8 Industry
      • Aruba - HP
      • Broadcom
      • Buffalo
      • Cisco
      • D-Link
      • Fortinet
      • Linksys
      • Marvell
      • Netgear
      • Qualcomm
      • Quantenna
      • Redpine Signals
    • 3.3.9 MIMO and 802.11ac Standard
      • 3.3.9.1 Comparison
      • 3.3.9.2 Market Projections
  • 3.4 802.11ah and MIMO Role
    • 3.4.1 802.11ah (Wi-Fi HaLow)
    • 3.4.2 Requirements
    • 3.4.3 Goal and Schedule
    • 3.4.4 Attributes
    • 3.4.5 Use Cases
    • 3.4.6 PHY
      • 3.4.6.1 Bandwidth
      • 3.4.6.2 Channelization
      • 3.4.6.3 Transmission Modes and MIMO
      • 3.4.6.4 Relay Mode
    • 3.4.7 MAC Layer
    • 3.4.8 Summary
    • 3.4.9 Industry
      • Aviacomm/Newracom
      • Orca
      • Aegis-IP
  • 3.5 802.11ay and MIMO Technology
    • 3.5.1 Timetable
    • 3.5.2 Scope
    • 3.5.3 Need
    • 3.5.4 Usage Cases (Examples)
    • 3.5.5 Expected Characteristics
    • 3.5.6 MIMO - Preliminary View

4.0 MIMO in Wireline Communications

  • 4.1 HomePNA and ITU MIMO-based Technologies
    • 4.1.1 HomeGrid Forum
      • 4.1.1.1. Specifications
        • 4.1.1.1.1 General
        • 4.1.1.1.2 HomePNA Specification 3.1: Major Features
        • 4.1.1.1.3 Fast EoC HomePNA
      • 4.1.1.2 Major Benefits
    • 4.1.2 ITU G.hn
      • 4.1.2.1 General
      • 4.1.2.2 G.hn Details
        • 4.1.2.2.1 Differences
        • 4.1.2.2.2 Common Features
      • 4.1.2.3 Acceptance
      • 4.1.2.4 HomePNA and G.hn Documents
      • 4.1.2.5 G.hn-mimo - G.9963
        • 4.1.2.5.1 Drivers
        • 4.1.2.5.2 G.9963 Details
          • 4.1.2.5.2.1 General
          • 4.1.2.5.2.2 Wireline Specifics - G.hn-mimo
          • 4.1.2.5.2.3 Scope
          • 4.1.2.5.2.4 Performance
    • 4.1.3 Industry
      • Comtrend
      • Marvell
      • Sigma Designs
      • ST&T
  • 4.2 HomePlugAV2-mimo
    • 4.2.1 General
      • 4.2.1.1 Certification
    • 4.2.2 Major Improvements
    • 4.2.3 Specification Details
      • 4.2.3.1 MIMO Role
    • 4.2.4 Industry
      • Broadcom
      • Extollo
      • Gigafast Ethernet
      • Intersil
      • Lea Networks
      • Sineoji
      • Trendnet
      • TP-Link
      • Qualcomm Atheros
      • Zyxel

5.0 Conclusions

  • Figure 1: 2x2 MIMO
  • Figure 2: Major Antenna Configurations
  • Figure 3: MIMO Concept (2x2)
  • Figure 4: Illustration - Beamforming
  • Figure 5: MU-MIMO - Downlink
  • Figure 6: Differences
  • Figure 7: Evolution Path
  • Figure 8: Towards Wireless Mobile Broadband
  • Figure 9: LTE - IP
  • Figure 10: EPC - Reference Architecture
  • Figure 11: Projections: LTE Global Subscribers Base (Bil.)
  • Figure 12: TAM: LTE Global Equipment Sale ($B)
  • Figure 13: Spectral Efficiency DL
  • Figure 14: Projections: Global - LTE MIMO Sales ($B)
  • Figure 15: Channel Assignment
  • Figure 16: Estimate - 802.11ac Consumers AP Shipping-Global (Mil. Units)
  • Figure 17: Estimate - 802.11ac Consumers AP Shipping-Global ($B)
  • Figure 18: Estimate: Global Shipping - 802.11ac MU-MIMO Consumers AP ($B)
  • Figure 19: Estimate: Global - 802.11ac Consumers AP MIMO Sales ($B)
  • Figure 20: 802.11ah Use Cases
  • Figure 21: Frequency Spectrum (sub-1 GHz)
  • Figure 22: 802.11ah - Channelization Plan in U.S.
  • Figure 23: Transmission Characteristics - 802.11ah
  • Figure 24: 802.11ah Features Summary
  • Figure 25: PLC-MIMO (2x2)
  • Figure 26: MIMO -Details
  • Figure 27: Maximum Theoretical PHY Rates (home media) based on published figures
  • Figure 28: HomePlug AV2 Features
  • Figure 29: MIMO PLC Channels
  • Table 1: MIMO Variations
  • Table 2: MIMO Benefits
  • Table 3: 3GPP Releases
  • Table 4: Schedule
  • Table 5: Initial LTE Characteristics: Illustration
  • Table 6: LTE Frequency Bands
  • Table 7: Users Equipment Categories (Rel. 8)
  • Table 8: UE Categories (Rel. 10)
  • Table 9: Extended - Rel.13
  • Table 10: Transmission Modes
  • Table 11: LTE Transmission Modes - MIMO
  • Table 12: Additional Details
  • Table 13: Comparison - Wi-Fi Characteristics
  • Table 14: PHY: 802.11ax vs 802.11ac
  • Table 15: Functionalities - 802.11ac
  • Table 16: Specifics
  • Table 17: Rates
  • Table 18: Usage Models - 802.11ac
  • Table 19: 802.11ac Waves
  • Table 20: 802.11n vs. 802.11ac
  • Table 21: ITU and HomePNA Standards
  • Table 22: Comparative Characteristics
  • Table 23: Frequency-Rate Characteristics
Back to Top