Cover Image
市場調查報告書

IoT通訊的進步:技術、市場、應用

Progress in IoT Communications - Technologies, Markets and Applications

出版商 Practel, Inc. 商品編碼 562243
出版日期 內容資訊 英文 139 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
IoT通訊的進步:技術、市場、應用 Progress in IoT Communications - Technologies, Markets and Applications
出版日期: 2017年10月05日 內容資訊: 英文 139 Pages
簡介

本報告以IIoT/M2M用設計的新通訊技術為焦點,提供那些技術的規格的相關分析,標準化團體相關動向分析,全球IoT通訊協議市場概要,及各通訊協定分類的主要企業等相關彙整。

第1章 簡介

第2章 IoT/M2M通訊的規格

  • 概要
  • 環境
  • 現狀
  • 必要條件
  • 頻譜必要條件
  • 摘要

第3章 IoT通訊技術的開發

  • Weightless Technologies
    • Weightless SIG
    • Weightless Technologies比較
  • RPMA
    • 主要的特徵
    • 普及
    • 零組件、結構
    • 利用案例
  • LoRa
    • 聯盟
    • 技術結構要素
    • 產業
  • SigFox
    • 企業
    • 技術
    • 涵蓋範圍
    • 利用案例
    • 產業
  • Waviot
    • NB-Fi 技術
    • NB-Fi的主要特徵
    • 應用
    • 產品
  • 威脅
    • 概要:從智慧家庭到商業大樓
    • 課題
    • 通訊協定
    • 主要的特徵
    • 規格的摘要
    • 零組件
    • 產業
    • 比較

第4章 IoT通訊:現有技術的引進

  • Wi-Fi
    • IoT通訊及Wi-Fi
    • 802.11ah (Wi-Fi HaLow)
  • 3GPP 及 IoT通訊
    • 3GPP Position
    • IoT通訊的必要條件、LTE
    • 3GPP LTE Rel. 12開發及IoT通訊
    • 3GPP LTE Rel. 13/14開發及IoT通訊
    • 進一步改善
    • LTE/IoT 功能的摘要
    • NB-IoT標準化
    • Extended Coverage - GSM - Internet of Things (EC-GSM-IoT)
    • 產業
    • 摘要:比較
  • Bluetooth Mesh
    • 概要
    • 規格
    • 可能性
    • 主要的特徵
    • 優點
    • 產業

第5章 IoT通訊的標準化:ETSI、ITU、其他

  • ETSI
  • ITU
  • oneM2M
  • ISO/IES
  • IEEE P2413

第6章 IoT通訊:市場開發

  • 統計
  • 估計

第7章 結論

附錄I:802.11ah - 相關專利調查

附錄II:比較

圖表

目錄

This report addresses novel technologies designed for IoT/M2M communications.

Due to multiplicity of factors that should be considered in the developing IoT networks (applications, battery requirements, and traffic specifics) there is only a very remote possibility that a single technology will resolve all IoT communications issues. So far, the picture is very fragmented with multiple organizations developing specific technologies.

There are two main tracks to wide-area public-network connectivity. The first is the evolution of LTE (and some other cellular technologies) to support IoT applications: longer battery life, longer range, lower cost in exchange for lower throughput. The second track includes narrow-band (NB) and ultra-narrow band (UNB) technologies promoted as a clean slate solution for IoT connectivity.

Mesh technologies (typically based on ZigBee) and Wi-Fi extensions (e.g. 802.11ah) have typically been used in private networks and have a separate evolution path (as examples, the report addresses 802.11ah, Bluetooth Mesh and Thread). Bluetooth Mesh is bringing many important to IoT communications features utilizing well established hardware platforms.

New proprietary technologies, such as LoRa, SigFox and other came into the market before standardized technologies; and they have already gained the sufficient market share. 3GPP standards have been approved only in 2016-2017.

Despite of this, it is expected that modified LTE and GSM will be able relatively fast to gain power- for these techniques, vast amount of cellular infrastructure is ready, and adaption to IoT communications requirements can be done usually through software upgrade. The report compares advantages and weaknesses of each method.

For the purpose of this report analysis, we distinguished the following groups of technologies:

1. Low Power Wide Area (LPWA) communications (Sub-1 GHz):

  • LoRA
  • SigFox
  • Weightless (W, N, P)
  • Waviot

2. 3GPP cellular LPWA (LTE, GSM):

  • NB-IoT
  • LTE Cat - M
  • EC-GSM-IoT
  • Other

3. Industry Groups/Standardizations Organizations:

  • IEEE802.11ah (Sub-1 GHz)
  • Thread
  • Bluetooth Mesh
  • ETSI LTN
  • Ingenu.

LPWA communication is split into two separate sub-categories. On the one hand, there are the current proprietary LPWA technologies, such as SigFox and LoRa, which typically operate on unlicensed sub -1 GHz spectrum. On the other hand, there are the forthcoming 3GPP standardized cellular IoT technologies, which typically operate on licensed spectrum (3GPP Rel. 12, 13 and up).

Designed specifically for low bandwidth, low-power IoT applications, LPWAs structures are poised to see huge growth over the next few years, with stakeholders across the industry now talking about LPWA technologies as a core enabler of the IoT.

LPWA profile IoT applications include metering, agriculture, vehicle telematics, tracking, healthcare, consumer products, and others. It is estimated that 3-4 billion LPWA connections will be in place by 2020, with hardware, network and service revenues reaching $9-$11 billion.

The report also analyzes the related work of such standards bodies as the IEEE, ITU, ETSI and other.

The report goals are also to identify major players in each protocol category; and estimate (5-year forecast) major marketing characteristics of still young IoT communications industry.

The survey of 802.11ah-related patents is also presented in the report.

The report was developed for a wide audience of managerial and technical staff of organizations that are working on IoT/M2M communications projects.

Table of Contents

1.0 Introduction

  • 1.1 Definition
  • 1.2 General
  • 1.3 Scope
    • 1.3.1 Major Goal
  • 1.4 Research Methodology
  • 1.5 Target Audience

2.0 IoT/M2M Communications Specifics

  • 2.1 General
    • 2.1.1 Main Tracks
  • 2.2 Environment
  • 2.3 Current Situation
  • 2.4 Requirements
  • 2.5 Spectrum Requirements
  • 2.6 Summary

3.0 Developing Communications Technologies for IoT

  • 3.1 Weightless Technologies
    • 3.1.1 Weightless SIG
      • 3.1.1.1 Common Features
      • 3.1.1.2 Weightless-W
        • 3.1.1.2.1 White Spaces Communications - Principles
        • 3.1.1.2.2 Definition
        • 3.1.1.2.3 Rational
        • 3.1.1.2.4 Ecosystem and Use Cases
        • 3.1.1.2.5 Weightless-W Details
      • 3.1.1.3 Changes
      • 3.1.1.4 Weightless-N
        • 3.1.1.4.1 General
        • 3.1.1.4.2 Open Standard
        • 3.1.1.4.3 Nwave
        • 3.1.1.4.4 First Deployments
        • 3.1.1.4.5 Summary
      • 3.1.1.5 Weightless-P
        • 3.1.1.5.1 General
        • 3.1.1.5.2 Details
        • 3.1.1.5.3 M2COMM
    • 3.1.2 Comparison of Weightless Technologies
  • 3.2 RPMA
    • 3.2.1 Major Features
    • 3.2.2 Proliferation
    • 3.2.3 Components and Structure
    • 3.2.4 Use Cases
  • 3.3 LoRa
    • 3.3.1 Alliance
    • 3.3.1.1 Open Protocol
    • 3.3.2 Technology Building Blocks
      • 3.3.2.1 Layered Structure - Illustration
      • 3.3.2.2 Modulation
      • 3.3.2.3 Long Range
      • 3.3.2.4 Applications
      • 3.3.2.5 Network Architecture
      • 3.3.2.6 Classes
      • 3.3.2.7 LoRaWAN
      • 3.3.2.8 Major Characteristics
    • 3.3.3 Industry
      • Actility
      • Advantech
      • Amiho
      • Cisco
      • Embit
      • Kerlink
      • Link Labs
      • LORIOT.io
      • Microchip Technology
      • MultiTech
      • Murata
      • Sagemcom
      • Semtech
      • STMicroelectronics
      • Tektelic
  • 3.4 SigFox
    • 3.4.1 Company
    • 3.4.2 Technology
      • 3.4.2.1 Details - Uplink
      • 3.4.2.2 Details - Downlink
      • 3.4.2.3 SmartLNB
    • 3.4.3 Coverage
    • 3.4.4 Use Cases
    • 3.4.5 Industry
      • Adeunis RF
      • Atmel
      • Innocomm
      • Microchip
      • On Semiconductor
      • Telit
      • TI
  • 3.5 Waviot
    • 3.5.1 NB-Fi Technology
    • 3.5.2 NB-Fi Major features
    • 3.5.3 Applications
    • 3.5.4 Products
  • 3.6 Thread
    • 3.6.1 General: From Smart Home to Commercial Buildings
    • 3.6.2 Challenges
    • 3.6.3 Protocol
    • 3.6.4 Major Features
    • 3.6.5 Specification Summary
    • 3.6.6 Components
    • 3.6.7 Industry
      • CEL
      • Digi
      • NXP (Qualcomm)
      • Silicon Labs
    • 3.6.8 Comparison

4.0 IoT Communications: Adaption Existing Technologies

  • 4.1 Wi-Fi
    • 4.1.1 IoT Communications and Wi-Fi
    • 4.1.2 802.11ah (Wi-Fi HaLow)
      • 4.1.2.1 Requirements
      • 4.1.2.2 Goal and Schedule
      • 4.1.2.3 Attributes
      • 4.1.2.4 Use Cases
      • 4.1.2.5 PHY
      • 4.1.2.5.1 Bandwidth
      • 4.1.2.5.2 Channelization
      • 4.1.2.5.3 Transmission Modes and MIMO
      • 4.1.2.5.4 Relay Mode
      • 4.1.2.6 MAC Layer
      • 4.1.2.7 Summary
      • 4.1.2.8 Industry
        • Aviacomm/Newracom
        • Orca
        • Aegis-IP
  • 4.2 3GPP and IoT Communications
    • 4.2.1 3GPP Position
    • 4.2.2 IoT Communications Requirements and LTE
    • 4.2.3 3GPP LTE Rel. 12 Developments and IoT Communications
    • 4.2.4 3GPP LTE Rel. 13/14 Developments and IoT Communications
    • 4.2.5 Further Enhancements
    • 4.2.6 Summary of LTE/IoT Features
    • 4.2.7 NB-IoT Standardized
      • 4.2.7.1 Scope
        • 4.2.7.1.1 Scalable LTE IoT Platform
    • 4.2.8 Extended Coverage - GSM - Internet of Things (EC-GSM-IoT)
    • 4.2.9 Industry
      • Altair (acquired by Sony in 2016)
      • Aeris
      • Ericsson
      • Gemalto
      • Kore Telematics
      • Mistbase (acquired by Arm in 2017)
      • Orca
      • Sequans
      • Qualcomm
      • u-blox
      • WNC
    • 4.2.9 Summary - Comparison
  • 4.3 Bluetooth Mesh
    • 4.3.1 General
    • 4.3.2 Specifications
      • 4.3.2.1 Mesh Profile Specification
      • 4.3.2.2 Mesh Model Specification
      • 4.3.2.3 Mesh Device Property Specification
    • 4.3.3 Potentials
      • 4.3.3.1 Concept
    • 4.3.4 Major Features
    • 4.3.5 Benefits
    • 4.3.6 Industry

5.0 IoT Communications Standardization: ETSI, ITU and Other

  • 5.1 ETSI
    • 5.1.1 Efforts
    • 5.1.2 Low Throughput Network
      • 5.1.2.1 Weightless and ETSI
  • 5.2 ITU
    • 5.2.1 SG 20
  • 5.3 oneM2M
  • 5.4 ISO/IES
  • 5.5 IEEE P2413

6.0 IoT Communications - Market Development

  • 6.1 Statistics
  • 6.2 Estimate
    • 6.2.1 IoT/M2M Traffic Volume
    • 6.2.2 IoT/M2M Communications Market
    • 6.2.3 IoT Connections
    • 6.2.4 IoT Telecom Services
    • 6.2.5 Cellular IoT Subscribers

7.0 Conclusions

  • Attachment I: 802.11ah - related Patents Survey (2015-2016)
  • Attachment II: Comparison
  • Figure 1: IoT Environment
  • Figure 2: Iceni Characteristics
  • Figure 3: Nwave Characteristics Comparison
  • Figure 4: Weightless Technologies Comparison
  • Figure 5: LoRa Protocol Architecture
  • Figure 6: LoRa Architecture
  • Figure 7: LoRa Classes
  • Figure 8: Battery Lifetime
  • Figure 9: Regional Differences
  • Figure 10: Features - SigFox
  • Figure 11: Uplink Frame Format
  • Figure 12: Downlink Frame Format
  • Figure 13: Waviot Major Applications
  • Figure 14: Thread Protocol Stack and Related Standards
  • Figure 15: Thread Protocol Major Features
  • Figure 16: 802.11ah Use Cases
  • Figure 17: Frequency Spectrum (sub-1 GHz)
  • Figure 18: 802.11ah - Channelization Plan in U.S.
  • Figure 19: Transmission Characteristics - 802.11ah
  • Figure 20: 802.11ah Features Summary
  • Figure 21: CAT-0 and CAT-1 Characteristics
  • Figure 22: Time Schedule - 3GPP
  • Figure 23: Modem Complexity
  • Figure 24: IoT Communications Technologies Characteristics Comparison
  • Figure 25: Evolution of LTE IoT Communications
  • Figure 26: Cellular-based IoT Technologies
  • Figure 27: IoT Communications Technologies Comparison
  • Figure 28: BT Mesh Architecture
  • Figure 29: ETSI Activity - IoT/M2M Communications
  • Figure 30: Use Cases
  • Figure 31: M2M Applications
  • Figure 32: Projections: IoT/M2M Traffic Volume (PB/Month)
  • Figure 33: Estimate: Global Market - IoT/M2M Communications ($B)
  • Figure 34: Estimate: Number of IoT Connections (Bil.)
  • Figure 35: TAM: IoT Telecom Services - Global ($B)
  • Figure 36: Estimate: Number of Cellular IoT Subscribers (Bil.)
  • Figure 37: Projections: IoT/M2M Technologies and Applications Market ($T)
  • Figure 38: Projections: Number of Smart Devices in Smart Homes-Global (Bil.)
  • Figure 39: Estimate: N.A. IoT Generated Revenue ($T)
  • Figure 40: Estimate - Global LPWAN Market ($B)
Back to Top