Cover Image
市場調查報告書

可重構的無線電:閒置頻段的M2M通訊

Reconfigurable Radio - White Spaces M2M Communications

出版商 Practel, Inc. 商品編碼 311565
出版日期 內容資訊 英文
商品交期: 最快1-2個工作天內
價格
Back to Top
可重構的無線電:閒置頻段的M2M通訊 Reconfigurable Radio - White Spaces M2M Communications
出版日期: 2014年09月02日 內容資訊: 英文
簡介

本報告以利用可重構的無線電的特徵的最初技術之一的閒置頻譜通訊的開發為焦點,提供閒置頻譜通訊的特徵、通訊的優點及課題分析、各國的法規環境、標準化的配合措施、應用M2M通訊等相關資訊。

第1章 簡介

第2章 軟體定義、感知無線電

  • 概要
  • 目的
  • 定義(WIF、FCC、ITU)
  • SDR:法規
  • 標準化團體的配合措施
  • 討論事項
  • 特性
  • SDR實行
  • 應用
  • SDR/CR:優點
  • 影響
  • 市場
  • 產業

第3章 閒置頻譜通訊:法規

  • 定義
  • 地區
  • FCC活動
  • 日本
  • 歐洲:Ofcom以及其他
  • 加拿大
  • 生態系統、利用案例

第4章 閒置頻譜通訊:標準化、產業

  • WS聯盟
  • WIF - WS
  • WS-相關的IEEE標準
  • CogNeA 及 ECMA活動
  • IETF-PAWS
  • ETSI
  • 產業
  • 市場
  • 實驗、計劃

第5章 M2M通訊及WS

  • 特殊需求
  • 標準化
  • 市場
  • 產業-創新
  • TVWS所扮演的角色

第6章 結論

圖表

目錄

Target Audience

This report is written for a wide population of researches, technical and sales staff involved in the developing of the Cognitive Radio technologies, particular in the White Spaces environment to enhance M2M communications. It is recommended for both service providers and vendors that are working with related technologies.

Brief

The value in machines having wireless communications has long been understood and a large market is predicted for many years. That this has not transpired yet has been because of the difficulty of meeting all the requirements within the constraints of the available radio spectrum.

These constraints changed significantly with the advent of White Space (WS) availability.

The report concentrates on the development of White Spaces communications as one of the first technologies that utilizes properties of reconfigurable radio. It shows that the combination of spectrum awareness together with the selection of White Spaces frequencies windows create a new modern multi-applications industry. The report analyzes specifics of White Spaces communications in such environments and reflects communications benefits and issues. The White Spaces communications market is just evolving and promises multiple applications; one of such applications - M2M communications - is detailed.

The report goal was to analyze M2M communications based on utilization of White Spaces. To reach this goal:

  • 1. Reconfigurable radio analysis was performed to show roots of spectrum sensing in WS communications. Technologies, standards, markets, industry and applications of reconfigurable radio were addressed.
  • 2. White Spaces communications origin, properties, regulations, standards and industry were analyzed.
  • 3. Development of the evolving industry - M2M/IoT communications - was addressed. For this purposes, specifics of such communications, their standardization, market properties and industry have been presented.
  • 4. WS-supported M2M communications were analyzed; the evolving industry activity, standardizations efforts and specifics have been presented. In particular, the Weightless standard development was addressed.

The report is written for a wide audience of researches, engineers and managers that are involved in the development and utilization of cognitive radios and M2M communications for commercial markets.

Table of Contents

1.0 Introduction

  • 1.1 General
  • 1.2 Scope
    • 1.2.1 Major Goal
  • 1.3 Research Methodology
  • 1.4 Target Audience

2.0 Software Defined and Cognitive Radios

  • 2.1 General
  • 2.2 Purpose
  • 2.3 Definitions (WIF, FCC, ITU)
    • 2.3.1 Wireless Innovation Forum Position
  • 2.4 SDR: Regulations
    • 2.4.1 FCC
      • 2.4.1.1 Equipment Type
      • 2.4.1.2 Process
      • 2.4.1.3 Application Guide
      • 2.4.1.4 First Approval
    • 2.4.2 ITU
    • 2.4.3 Ofcom
  • 2.5 Standardization Organizations Efforts
    • 2.5.1 ITU-R
    • 2.5.2 ETSI
      • 2.5.2.1 General
      • 2.5.2.2 Major Points
    • 2.5.3 3GPP
    • 2.5.4 IEEE
    • 2.5.5 NASA
  • 2.6 Considerations
  • 2.7 Properties
    • 2.7.1 Layers
    • 2.7.2 Details
    • 2.7.3 Versatility
    • 2.7.4 Issues
  • 2.8 SDR Implementations
  • 2.9 Applications
    • 2.9.1 Commercial
    • 2.9.2 SDR/CR in Military
      • 2.9.2.1 SCA
    • 2.9.3 Public Safety Communications (PSC)
  • 2.10 SDR/CR: Benefits
  • 2.11 Impact
    • 2.11.1 Geographical Differences
  • 2.12 Market
    • 2.12.1 Landscape
      • 2.12.1.1 Factors
    • 2.12.2 Trends
    • 2.12.3 Cost
    • 2.12.4 Different Perspective
    • 2.12.5 Market Drivers-Summary
    • 2.12.6 Market Forecast
    • 2.12.6.1 Model Assumptions
    • 2.12.6.2 Estimate
  • 2.13 Industry
    • Aeronix (SDR Components)
    • AirNet Communications (SDR Base Stations)
    • AirSpan (BS)
    • Alcatel-Lucent (Base Stations)
    • Analog Devises (Chipsets)
    • Array Systems Computing (DSP)
    • Cambridge Consultants (PHY, Base Station)
    • Carlson Wireless (Platform)
    • Cisco (802.11a)
    • CRT (CR SW)
    • General Dynamics (Platform)
    • DataSoft (SDR Design, SW)
    • Digital Receiver Technology (Radio Modules)
    • Etherstack (Software)
    • Ericsson
    • Green Hills (Software)
    • Harris (SDR)
    • Huawei (Platform)
    • Intel (Platform)
    • Lockheed Martin
    • Lyrtech - Nutaq (DSP and FPGA development solutions)
    • Motorola Solutions (BS)
    • Nokia Siemens Networks (Base Station)
    • Objective Interface Systems (Software)
    • PrismTech (SDR Development Environment)
    • Rockwell Collins (Radios)
    • Spectrum Signal Processing (Platforms)
    • Tecore Networks (Infrastructure)
    • Thales (Radio)
    • TI (Chips)
    • Vanu (Base Stations)
    • Wind River (Software)
    • Xilinx (Chips, SDR Development Kit)
    • xG Technology (Radio)
    • ZTE (Platforms)

3.0 White Spaces Communications: Regulations

  • 3.1 Definition
  • 3.2 Rational
  • 3.3 FCC Activity
    • 3.3.1 Start
    • 3.3.2 Devices
    • 3.3.3 Clarifications
      • 3.3.3.1 Sensing
      • 3.3.3.2 Power
    • 3.3.4 Specifics
      • 3.3.4.1 Protection
      • 3.3.4.2 Frequencies
      • 3.3.4.3 TVWS Database (U.S.)
    • 3.3.5 Further Work
  • 3.4 Japan
  • 3.5 Europe: Ofcom and Other
  • 3.6 Canada
  • 3.7 Ecosystem and Use Cases

4.0 White Spaces Communications: Standardization and Industry

  • 4.1 WS Alliance
    • 4.1.1 Wi-FAR
    • 4.1.2 WSAConnect
  • 4.2 WIF - WS
  • 4.3 WS-related IEEE Standards
    • 4.3.1 IEEE 802.11af - 2013
      • 4.3.1.1 General: Expectations - Wi-Fi on Steroids
      • 4.3.1.2 Differences
      • 4.3.1.3 Benefits
      • 4.3.1.4 Specifics
      • 4.3.1.4.1 Building Blocks
      • 4.3.1.4.2 PHY
      • 4.3.1.5 Prototyping
      • 4.3.1.6 Summary
    • 4.3.2 IEEE SCC 41 - DySpan SC
      • 4.3.2.1 IEEE 1900.4
      • 4.3.2.2 IEEE 1900.4a - 2011
      • 4.3.2.3 IEEE 1900.4.1
    • 4.3.3 IEEE 802.22 - 2011
      • 4.3.3.1 General
      • 4.3.3.2 WG 802.22 and FCC
      • 4.3.3.3 Overview
      • 4.3.3.4 Physical Layer - Major Characteristics
      • 4.3.3.4.1 Frames
      • 4.3.3.5 Cognitive Functions and MAC
      • 4.3.3.6 IEEE 802.22.1
      • 4.3.3.7 IEEE 802.22.2
      • 4.3.3.8 IEEE 802.22a-2014
      • 4.3.3.9 P802.22b
      • 4.3.3.10 Summary-IEEE802.22
    • 4.3.4 IEEE 802.19
      • 4.3.4.1 IEEE 802.19.1-2014
    • 4.3.5 IEEE 802.15.4m-2014
  • 4.4 CogNeA and ECMA Activity
    • 4.4.1 CogNeA
      • 4.4.1.1 Development
    • 4.4.2 ECMA-392-2011
  • 4.5 IETF-PAWS
  • 4.6 ETSI
  • 4.7 Industry
    • Adaptrum
    • Aviacomm
    • Carlson Wireless
    • KTS Wireless
    • Metric Systems
    • Neul
    • Redline Communications
    • Sinecom
    • Spectrum Bridge
    • TI/Azcom
  • 4.8 Market
  • 4.9 Trials and Projects
    • 4.9.1 London Trial
    • 4.9.2 Additional Information
    • 4.9.3 Microsoft Wi-Fi-NC and Other
    • 4.9.4 Utility
    • 4.9.5 Airspan Trials
    • 4.9.6 Neul Trials

5.0 M2M Communications and WS

  • 5.1 Special Needs
    • 5.1.1 Spectrum
    • 5.1.2 Summary
  • 5.2 Standardization
    • 5.2.1 IEEE
    • 5.2.2 ETSI
    • 5.2.3 ITU
    • 5.2.4 oneM2M
    • 5.2.5 ISO/IES
  • 5.3 Market
    • 5.3.1 Data
    • 5.3.2 Estimate
  • 5.4 Industry-Innovations
    • Arqiva/Sensus
    • Kore Telematics
    • M2M Spectrum Networks
    • On-Ramp
    • SigFox/Telit
    • Telensa/Plextek
  • 5.5 Role of TVWS
    • 5.5.1 Progress
    • 5.5.2 Challenges
    • 5.5.3 Solution
    • 5.5.4 Cambridge TVWS Consortium - Cambridge Trial
    • 5.5.5 Development of Weightless Technology
      • 5.5.5.1 Standard
      • 5.5.5.2 Details
      • 5.5.5.3 Specifics
      • 5.5.5.4 Neul
        • 5.5.5.4.1 Weightless Chip
        • 5.5.5.4.2 Technology Features
      • 5.5.5.5 Network Structure
        • 5.5.5.5.1 Plan
        • 5.5.5.5.2 Performance Summary
      • 5.5.5.6 Specific Details
        • 5.5.5.6.1 Range of Applications
      • 5.5.5.7 NextG-Com: Industry
      • 5.5.5.8 Market Considerations

6.0 Conclusions

  • Figure 1: Conceptual View
  • Figure 2: Reconfigurable BS
  • Figure 3: SDR: Reference Architecture
  • Figure 4: SDR and OSI Reference Model
  • Figure 5: PSC Specifics
  • Figure 6: TAM: Global SDR-based Equipment Sales ($B)
  • Figure 7: SDR Market Segments
  • Figure 8: SDR Market Geography (2014)
  • Figure 9: TVWS Channels
  • Figure 10: UK TVWS- Spectrum
  • Figure 11: Architecture: 802.19.1
  • Figure 12: TVWS Market
  • Figure 13: IoT Environment
  • Figure 14: ETSI Activity
  • Figure 15: Use Cases
  • Figure 16: M2M Applications
  • Figure 17: Projections: M2M Traffic Growth (PB/Month)
  • Figure 18: TAM: M2M Communications Revenue ($B)
  • Figure 19: Weightless Networking: Simplified
  • Table 1: SDR Tiers
  • Table 2: CR Features
  • Table 3: U.S. - PSC Users
  • Table 4: SDR Market Drivers
  • Table 5: TV Channels: WS Frequencies Allowed by FCC
  • Table 6: TV Channels and Fixed TVBDs
  • Table 7: Database Status (2014)
  • Table 8: IEEE WS-related Standards
  • Table 9: Use Cases
  • Table 10: Major Characteristics: IEEE 802.22
  • Table 11: Key M2M Elements
  • Table 12: Iceni Characteristics
Back to Top