封面
市場調查報告書
商品編碼
1195534

3D 細胞培養市場 - COVID-19 的增長、趨勢、影響和預測 (2023-2028)

3D Cell Culture Market - Growth, Trends, and Forecasts (2023 - 2028)

出版日期: | 出版商: Mordor Intelligence | 英文 116 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

在 2022-2027 年的預測期內,3D 細胞培養市場預計將以 12.5% 的複合年增長率增長。

預計 COVID-19 大流行將對市場產生重大影響。 研究人員使用與 3D 細胞培養相關且適用於氣液界面培養的基質 COVID-19,將探索體外細胞培養的全身效應機制和生理微環境中的潛在治療法。 這是在 COVID-19 研究中使用 3D 細胞培養物的主要原因。 根據 2021 年 3 月發表在 Frontiers Online 上的論文“3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development”,在研究病毒感染時使用 3D 組織培養技術比 2D 組織培養有優勢,這也有啟示意義用於 COVID-19 研究。 此外,類器官和球體培養等技術比二維培養更準確地概括了病毒感染系統,即使在二維培養無法顯示的情況下,也能創造出實現病毒感染所需的形態學和生化行為。

由於使用 3D 細胞培養模型作為體內測試的替代工具、大規模自動化細胞培養系統的開發以及對器官移植的需求不斷增長等因素,3D 細胞培養市場呈現穩定增長。增加。 3D 細胞培養和共培養模型不僅能夠在比傳統 2D 細胞培養更多的體內條件下評估藥物安全性和有效性,而且還允許在人體系統中直接進行藥物測試,從而推動藥物測試的進步。這是一個很大的優勢,因為它消除了限制臨床結果解釋的物種差異。 此外,隨著對器官移植的需求不斷增加,需要在體外概括人體生理學、病理學和藥物反應的複雜方面,這可能會推動對 3D 細胞培養的需求。 據美國衛生資源服務局網站organdonor.gov,2021年10月,2020年全國等待器官移植的人數為107103人。 該網站的數據還顯示,美國每年進行 39,000 例器官移植。 因此,器官移植的增加增加了對使用 3D 細胞培養的研究模型的需求。 預計這將推動市場增長。

3D 細胞培養市場趨勢

預計產品微芯片領域在預測期內將呈現顯著增長

微芯片也稱為器官芯片或微系統。 微芯片可以使用微芯片行業的各種技術將微流體技術與在微製造 3D 設備中培養的細胞相結合。 例如,2019 年 6 月發表在 Analytical Methods 上的一項題為“Integration of 3D Cell Culture of PC12 Cells with Electrochemical Detection by Microchips”的研究證實,微芯片可以分別檢測多巴胺和去甲腎上腺素的釋放。 因此,用 3D 細胞培養設備製成的微芯片將有助於神經遞質的實時分析,在預測期內擴展同一部分。

二維 (2D) 培養和動物模型已用於機制研究和藥物開發。 然而,二維模型和動物模型無法在細胞類型和特性方面模仿人體組織的生理功能。 因此,傳統模型無法準確反映人類,也無法準確預測與藥物治療相關的體內反應。 對此,許多行業都在探索和開發新的平台來替代動物模型和燒瓶細胞培養模型,最近,器官芯片(OoC)成為細胞實驗和藥物篩選的替代候選者。我在這裡。

這些芯片的最大優勢是製造成本低廉。 這些芯片允許根據藥物劑量測試各種濃度。 預計這些優勢將推動對微芯片的需求,主要是為了顯著加速科學研究。 近年來,器官芯片技術在藥物發現過程中的創新應用取得了進展。 例如,2019 年 3 月,私人太空探索公司 SpaceX 宣布即將發射 Dragon Cargo 太空艙,其中包含四個嵌入活體人體細胞的微芯片,旨在模擬人體生理學的各個方面。 這有望加快分析速度,並為以後的藥物開發提供對人體生理學的見解。

因此,由於上述優勢和微芯片研究,3D 細胞培養技術有望推動市場增長。

北美市場份額最大,有望保持主導地位

北美在整個 3D 細胞培養市場中佔有壓倒性的份額,其中美國做出了重大貢獻。 美國非常重視研發,過去幾年在 3D 細胞培養研究方面投入了大量資金。 結果是該國的技術進步。 特點是3D細胞培養領域的主要專利申請者中有不少來自美國。 美國申請人傾向於在美國和亞洲開發他們的技術。

另外,在過去的幾年中,美國在生物技術領域進行了巨大的投資。 生物工程還包括 3D 細胞培養研究。 根據美國國立衛生研究院的數據,2020 年各種生物工程技術的總投資達到 5,646 美元,高於 2019 年的 5,091 美元。 這些因素正在推動美國 3D 細胞培養市場。

此外,還需要在體外模擬人體生理學、病理學和藥物反應的複雜元素。 由於對器官移植的需求不斷增長,預計該地區也需要 3D 細胞培養。 根據加拿大健康信息研究所的數據,2021年加拿大(包括魁北克)共進行了3014例移植(全器官),比2010年增加了42%。 因此,在預測期內,上述所有因素都有望提振該地區的市場。

3D 細胞培養市場競爭對手分析

3D 細胞培養市場競爭激烈,由多家大型企業組成。 就市場份額而言,目前幾家主要參與者主導著市場。 Corning Incorporated、Lonza AG、Merck KGaA 和 Thermo Fisher Scientific 等主要市場參與者的存在加劇了整個市場競爭對手之間的競爭。

其他福利。

  • Excel 格式的市場預測 (ME) 表
  • 三個月的分析師支持

內容

第一章介紹

  • 研究假設和市場定義
  • 調查範圍

第二章研究方法論

第 3 章執行摘要

第四章市場動態

  • 市場概覽
  • 市場驅動因素
    • 使用 3D 細胞培養模型作為體內測試的替代工具
    • 自動化大規模細胞培養系統的開發
    • 器官移植的需求在增加
  • 市場製約因素
    • 缺乏經驗豐富、技能嫻熟的專業人員
    • 中小型實驗室的預算限制
  • 五力分析分析
    • 新進入者的威脅
    • 買方/消費者議價能力
    • 供應商的議價能力
    • 替代品的威脅
    • 競爭公司之間的敵對關係

第 5 章市場細分(基於價值的市場規模:100 萬美元)

  • 按產品分類
    • 基於支架的 3D 細胞培養裝置
      • 微圖案微孔板
      • 水凝膠
      • 其他產品
    • 無支架 3D 細胞培養裝置
      • 懸滴微孔板
      • 微流體 3D 細胞培養
      • 其他產品
    • 微芯片
    • 3D 生物反應器
  • 通過申請
    • 藥物發現
    • 組織工程
    • 臨床應用
    • 其他用途
  • 最終用戶
    • 研究機構和實驗室
    • 生物技術公司、製藥公司
    • 其他最終用戶
  • 按地區
    • 北美
      • 美國
      • 加拿大
      • 墨西哥
    • 歐洲
      • 德國
      • 英國
      • 法國
      • 意大利
      • 西班牙
      • 其他歐洲地區
    • 亞太地區
      • 中國
      • 日本
      • 印度
      • 澳大利亞
      • 韓國
      • 其他亞太地區
    • 中東
      • 海灣合作委員會
      • 南非
      • 其他中東地區
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲

第六章競爭格局

  • 公司簡介
    • BiomimX SRL
    • CN Bio Innovations
    • Corning Incorporated
    • Hurel Corporation
    • InSphero AG
    • Lonza AG
    • Merck KGaA
    • MIMETAS BV
    • Nortis Inc.
    • Thermo Fisher Scientific
    • Sartorius AG
    • Promocell GmbH

第7章 市場機會今後動向

簡介目錄
Product Code: 54434

The 3D cell culture market is expected to register a CAGR of 12.5% during the forecast period, 2022-2027.

The COVID-19 pandemic is expected to have a significant impact on the market. Researchers working on COVID-19 with relevant matrices for 3D cell culture and suitable for air-liquid interface culture need to investigate in vitro the mechanisms of the systemic consequences of cell cultures and to test potential therapies in a physiological microenvironment. This is the primary reason why 3D cell cultures are used in COVID-19 research. According to an article appearing in Frontiers Online in March 2021 titled, 3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development, there are benefits of using 3D tissue culture techniques over 2D tissue culture when studying viral infections and the implications with regards to studying COVID-19. The study also found that techniques like organoids and spheroid cultures have been shown to replicate systems of viral infection more accurately than 2D cultures and to produce morphology and biochemical behaviors required to allow for viral infection in cases where 2D cultures do not.

The 3D cell culture market is witnessing stable growth due to factors like the use of 3D cell culture models as alternative tools for in vivo testing, the development of large-scale automated cell culture systems, and the rising need for organ transplantation. The 3D cell culture and co-culture models have huge benefits since they not only enable drug safety and efficacy assessment in a more in vivo-like context than traditional 2D cell cultures, but they can eliminate the species differences that pose limitations in the interpretation of the preclinical outcomes, by allowing drug testing directly in human systems. Additionally, with the increase in demand for organ transplantation, there is likely to be a demand for 3D cell cultures as there is a need to recapitulate complex aspects of human physiology, pathology, and drug responses in vitro. According to the organdonor.gov website of the United States Health Resources and Services Administration, in October 2021, 107,103 patients were on the national organ transplant waiting list in the year 2020. Data from the website also states that each year, 39,000 organ transplants are conducted in the United States. Thus, the increase in organ transplants is increasing the demand for research models where 3D cell cultures are used. This is expected to boost the market growth.

3D Cell Culture Market Trends

The Microchips Segment under Product is Expected to see Significant Growth Rate Over the Forecast Period

Microchips are also called organ-on-a-chip or microsystems. Microchips can integrate microfluidic technologies with cells that are cultured within the microfabricated 3D devices, using various techniques from the microchip industry. For instance, the study published in the Analytical Methods in June 2019, titled Integrating 3D cell culture of PC12 cells with microchip-based electrochemical detection, identified that microchip was able to separate and detect dopamine and norepinephrine release. Thus, microchips fabricated with 3D cell culture devices help in the real-time analysis of neurotransmitters boost the segment over the forecast period.

2-dimensional (2D) culture models and animal models have been used for mechanism research and drug development. However, 2D models and animal models cannot mimic the physiology of human tissue in terms of the number of cell types and properties. Thus, conventional models cannot precisely reflect humans and have not been able to accurately predict in vivo responses related to drug treatment. In this regard, many industries have been looking for and developing a new platform to replace animal models or flask cell-culture models, and recently, organs-on-a-chip (OoCs) emerged as an alternative candidate for cell experiments and drug screening.

The main advantage of these chips is that they can be manufactured at a low cost. They allow for testing a wide range of concentrations in the dosage of medicine. This advantage is expected to drive the demand for microchips, primarily to considerably accelerate scientific research. In recent years, there have been innovative uses of organ chip technology for the drug discovery process. For example, in March 2019, the private space exploration company SpaceX announced that it plans to soon launch a Dragon cargo capsule that will contain four microchips embedded with living human cells designed to model various aspects of human physiology. This is expected to speed up analysis and glean insights on human physiology that can be used later for drug development.

As a result, due to the aforementioned advantages and research in microchips, 3D cell culture technologies are expected to drive the market's growth.

North America Captured the Largest Market Share and is Expected to Retain its Dominance

North America dominates the overall 3D cell culture market, with the United States being the major contributor to the market. The United States is focusing on R&D and has been making significant investments in research on 3D cell culture for the past few years. This has resulted in technological advancements in the country. Many American applicants feature among the main patent applicants for the 3D cell culture domain. American applicants tend to develop their technologies in the United States, as well as in Asia.

There have also been huge investments in the bioengineering sector in the United States over the past few years. Bioengineeringinvolves 3D cell culture research too. According to the National Institute of Health, in 2020, the total investment in various bio engineering technologies amounted to USD 5,646, an increase from USD 5,091 in 2019. These factors have augmented the US 3D cell culture market.

Moreover, there is a need to mimic intricate elements of human physiology, pathology, and medication reactions in vitro. There is expected to be a demand for 3D cell cultures as the demand for organ transplantation grows in the region. According to the Canadian Institute for Health Information, in 2021, a total of 3,014 transplant procedures (all organs) were performed in Canada (including Quebec), an increase of 42% since 2010. Thus, all the aforementioned factors are expected to boost the market in the region over the forecast period.

3D Cell Culture Market Competitor Analysis

The 3D cell culture market is highly competitive and consists of several major players. In terms of market share, few of the major players currently dominate the market. The presence of major market players, such as Corning Incorporated, Lonza AG, Merck KGaA, and Thermo Fisher Scientific, is increasing the overall competitive rivalry in the market.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Use of 3D Cell Culture Models as Alternative Tools for In Vivo Testing
    • 4.2.2 Development of Automated Large-scale Cell Culture Systems
    • 4.2.3 Rising Need for Organ Transplantation
  • 4.3 Market Restraints
    • 4.3.1 Lack of Experienced and Skilled Professionals
    • 4.3.2 Budget Restriction for Small- and Medium-sized Laboratories
  • 4.4 Porter's Five Forces Analysis
    • 4.4.1 Threat of New Entrants
    • 4.4.2 Bargaining Power of Buyers/Consumers
    • 4.4.3 Bargaining Power of Suppliers
    • 4.4.4 Threat of Substitute Products
    • 4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION (Market Size by Value - USD million)

  • 5.1 By Product
    • 5.1.1 Scaffold-based 3D Cell Cultures
      • 5.1.1.1 Micropatterned Surface Microplates
      • 5.1.1.2 Hydrogels
      • 5.1.1.3 Other Products
    • 5.1.2 Scaffold-free 3D Cell Cultures
      • 5.1.2.1 Hanging drop microplates
      • 5.1.2.2 Microfluidic 3D cell culture
      • 5.1.2.3 Other Products
    • 5.1.3 Microchips
    • 5.1.4 3D Bioreactors
  • 5.2 By Application
    • 5.2.1 Drug Discovery
    • 5.2.2 Tissue Engineering
    • 5.2.3 Clinical Applications
    • 5.2.4 Other Applications
  • 5.3 By End User
    • 5.3.1 Research Laboratories and Institutes
    • 5.3.2 Biotechnology and Pharmaceutical Companies
    • 5.3.3 Other End Users
  • 5.4 Geography
    • 5.4.1 North America
      • 5.4.1.1 United States
      • 5.4.1.2 Canada
      • 5.4.1.3 Mexico
    • 5.4.2 Europe
      • 5.4.2.1 Germany
      • 5.4.2.2 United Kingdom
      • 5.4.2.3 France
      • 5.4.2.4 Italy
      • 5.4.2.5 Spain
      • 5.4.2.6 Rest of Europe
    • 5.4.3 Asia-Pacific
      • 5.4.3.1 China
      • 5.4.3.2 Japan
      • 5.4.3.3 India
      • 5.4.3.4 Australia
      • 5.4.3.5 South Korea
      • 5.4.3.6 Rest of Asia-Pacific
    • 5.4.4 Middle-East
      • 5.4.4.1 GCC
      • 5.4.4.2 South Africa
      • 5.4.4.3 Rest of Middle-East
    • 5.4.5 South America
      • 5.4.5.1 Brazil
      • 5.4.5.2 Argentina
      • 5.4.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 BiomimX SRL
    • 6.1.2 CN Bio Innovations
    • 6.1.3 Corning Incorporated
    • 6.1.4 Hurel Corporation
    • 6.1.5 InSphero AG
    • 6.1.6 Lonza AG
    • 6.1.7 Merck KGaA
    • 6.1.8 MIMETAS BV
    • 6.1.9 Nortis Inc.
    • 6.1.10 Thermo Fisher Scientific
    • 6.1.11 Sartorius AG
    • 6.1.12 Promocell GmbH

7 MARKET OPPORTUNITIES AND FUTURE TRENDS