Cover Image
市場調查報告書

通訊服務供應商的B2B資訊服務:通訊API和DaaS (2015-2020年)

Communication Service Provider B2B Data Services: Telecom APIs and Data as a Service (DaaS) 2015 - 2020

出版商 Mind Commerce 商品編碼 338585
出版日期 內容資訊 英文 362 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
通訊服務供應商的B2B資訊服務:通訊API和DaaS (2015-2020年) Communication Service Provider B2B Data Services: Telecom APIs and Data as a Service (DaaS) 2015 - 2020
出版日期: 2015年09月01日 內容資訊: 英文 362 Pages
簡介

全球通訊服務供應商(CSP)在消費者的普及率方面已達到飽和,此外 核心的語音訊息服務之存在價值則日益縮小。為了解決這個問題,部分主要的CSP開始對OTT應用供應商等第三方公司提供基於DaaS (Data as a Service) 的通訊資料之B2B服務。

本報告提供通訊服務供應商 (CSP) 的B2B資訊服務之市場機會與展望相關調查,提供您通訊業者的提供API經營模式,產業案例,最佳業務實踐,價值鏈分析,業者及供應商的策略,通訊資料的未來性相關展望,市場成長預測,DaaS技術概要,生態系統,企業·解決方案,彙整各種經營者的策略,市場規模與其預測等相關資訊。

DaaS (Data as a Service) 市場預測

第1章 簡介

第2章 DaaS技術

  • 雲端
  • 資料庫方法&解決方案
    • RDBS (Relational Database Management System)
    • NoSQL
    • Hadoop
    • HPCC (High Performance Computing Cluster)
    • OpenStack
  • DaaS·XaaS的生態系統
  • Open Data Center Alliance
  • 市場規模

第3章 DaaS市場

  • 市場概要
  • 供應商分析·展望
  • 市場促進因素·阻礙要素
  • DaaS引進的障礙與課題
  • 市場佔有率·地區的影響分佈
  • 供應商
    • 1010data
    • Amazon
    • Clickfox
    • Datameer
    • Google
    • Hewlett-Packard
    • IBM
    • Infosys
    • Microsoft
    • Oracle
    • Rackspace
    • Salesforce
    • Splunk
    • Teradata
    • Tresata

第4章 DaaS策略

  • 一般的策略
    • 階層資料的焦點
    • 基於價值的價格設定
    • 開放式開發環境
  • 特殊策略
    • 服務的生態系統和平台
    • 混搭用複數資源的集中
    • 開發Proofpoint的附加價值服務
    • 對包含其他競爭公司的entity開放存取
    • 準備好來因應透過IoT的莫大市場機會
  • 服務供應商策略
    • 通訊網路業者
    • 資料中心供應商
    • 管理服務供應商
  • 基礎設施供應商策略
    • 新經營模式的實現
  • 應用程序開發策略

第5章 DaaS型應用

  • 商業智慧
  • 開發環境
  • 檢驗·認證
  • 匯報·分析
  • 醫療的DaaS
  • DaaS和穿戴式技術
  • 政府部門的DaaS
  • 媒體&娛樂DaaS
  • 通訊DaaS
  • 保險業DaaS
  • 公共事業&能源部門DaaS
  • 醫藥品產業的DaaS
  • 金融服務行業DaaS

第6章 市場展望·未來的DaaS

  • 近幾年的安全上的疑慮
  • 雲端趨勢
    • 混合運算
    • 多雲端
    • Cloud bursting
  • 一般的資料趨勢
  • 企業的自家公司資料·通訊的活用
    • 網站API
    • SOA·企業API
    • 雲端API
    • 通訊API
  • 資料Federation的崛起

第7章 總論

第8章 附錄

  • 結構化 vs 非結構化資料
  • 資料架構與機能性
  • MDM (主資料經營管理)
  • 資料探勘

圖表

通訊API市場:策略·生態系統·企業·預測

第1章 簡介

第2章 通訊網路API概要

  • 網路API定義
  • 電信業者的通訊網路API的引進的理由
    • 新收益源的必要性
    • B2B服務和不對稱的經營模式
  • 通訊網路API的類別
    • WebRTC
    • SMS·RCS-E
    • 存在感
    • MMS
    • 地理定位
    • 付款
    • 語音/說話者
    • 語音控制
    • 多媒體語音控制
    • M2M
    • SDM/ID管理
    • 用戶簡介
    • QoS
    • ID/SSO
    • 內容傳送
    • 託管UC
    • 目錄
    • 號碼供應
    • USSD
    • 非數位商品的帳務(計費)
    • 廣告
    • 合作
    • IVR/語音商店
  • 通訊網路API的經營模式
    • 兩側性的經營模式
    • API開發者的曝光
    • 網站混搭
  • 區分
    • 用戶:各種類
    • 勞動力管理
  • 競爭上的課題
    • TCO削減
    • 開放式API
    • 構成可能性
  • API利用應用的比例
  • 通訊API的收益可能性
  • 通訊網路API的利用:各產業
  • 通訊網路API的價值鏈
  • 各種API交易的成本
  • API交易的數量

第3章 API聚合

  • API整合商所扮演的角色
  • 整合商API的利用:總成本
  • 整合商API的利用:各類別

第4章 企業與通訊API市場

  • DaaS (Data as a Service)
  • API市場構成
  • 新類型應用市場的必要性:CAM

第5章 透過通訊API的應用利用案例

  • 通訊類型應用的收益化
    • 直接API收益
    • 資料的收益化
    • 降低成本
    • 高使用率
    • 降低解約率
  • 利用案例與課題
    • 安全
    • 互通性

第6章 非通訊網路API和混搭

  • 非通訊網路API
    • Twitter
    • Netflix API
    • Google Maps
    • Facebook
    • YouTube
    • Flickr
    • eBay
    • Last.fm
    • Amazon Web Service
    • Bing Maps
    • Yahoo Web Search API
    • Shopping.com
    • Salesforce.com
  • 混搭
    • BBC News on Mobile
    • GenSMS emailSMS
    • Foursquare
    • Amazon SNS and Nexmo
    • Triage.me
    • MappyHealth
    • Lunchflock
    • Mobile Time Tracking
    • Fitsquare
    • GeoSMS
    • FONFinder
    • Pound Docs
    • 140Call
    • Salesforce SMS

第7章 電信業者策略

  • 電信業者的市場策略·地位
  • 全球電信業者的API計劃
    • AT&T Mobility
    • Verizon Wireless
    • Vodafone
    • France Telecom
    • Telefonica
  • 電信業者和內部通訊API的利用
  • 電信業者·OTT服務供應商
  • 電信業者和附加價值服務 (VAS)

第8章 API支援應用程式開發者的策略

  • 開發者的重要資產
  • API開放擴大的刺激
  • 跟career program的合作
  • 開發者的喜好:Google vs 電信業者

第9章 通訊API供應商策略

  • Positioning as Enablers in the Value Chain
  • Moving Away from a Box/Product Supplier Strategy
  • 通訊API的企業·解決方案
    • Alcatel Lucent
    • UnboundID
    • Twilio
    • LOC-AID
    • Placecast
    • Samsung
    • AT&T Mobility
    • Apigee
    • 2600 Hz
    • Callfire
    • Plivo
    • Tropo (現在是Cisco的一部分)
    • Urban Airship
    • Voxeo (現在為Aspect Software)
    • TeleStax
    • Intel
    • 競爭上的差異化

第10章 市場分析·預測

  • 通訊網路的API收益預測
  • 通訊網路的API收益預測:各API類別
  • 通訊API收益的預測:各地區

第11章 技術·市場推進因素

  • SOA (Service Oriented Architecture)
  • SDN (Software Defined Networks)
  • 虛擬化
  • IoT (Internet of Things)

第12章 專家的見解:TeleStax

第13章 專家的見解:Twilio

第14章 專家的見解:Point.io

第15章 專家的見解:Nexmo

第16章 附錄

目錄

Global Communication Service Providers (CSP) have reached saturation with respect to customer penetration. Furthermore, core voice and messaging services are becoming increasingly marginalized. As fourth generation (4G) cellular via LTE is optimized globally via LTE Advanced (LTE-A), raw data services are next to realize ever shrinking margins. Recognizing this issue, certain leading CSPs offer telecom data Business-to-Business (B2B) services in a Data as a Service (DaaS) basis to various third party companies such as Over-the-Top (OTT) application providers.

Telecom data is provided over Application Programming Interfaces (API) from various CSP databases including number portability, messaging, location, and subscriber databases to name a few. Enterprise customers, OTT players, and others pay CSPs for data in a DaaS business model. This model is expected to expand globally beyond the current large CSPs to smaller CSPs, many of which are located in developing countries.

Additionally, Mind Commerce anticipates the coming of a Telecom API enabled Application Marketplace. This marketplace will be in many ways similar to those of Google and Apple with the key difference that apps rely upon CSP data delivered via APIs in a DaaS B2B business model. Finally, we see CSPs ultimately realizing that they must embrace the app marketplace to offer their own Value-added Service (VAS) apps, which they will initially target for their most important customers: enterprise.

This research evaluates CSP B2B data services opportunities. The report provides an in-depth assessment of the global Telecom Network API market, including business models, business case, best practices, value chain analysis, operator and vendor strategies, vision for the future of telecom data, and forecasts for 2015 to 2020. The report also evaluates the DaaS ecosystem including technologies, companies, and solutions. The report assesses market opportunities and provides a market outlook and forecast for 2015 to 2020. All purchases of Mind Commerce reports includes time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Target Audience:

  • App Developers
  • API Aggregators
  • Mobile Device Vendors
  • Mobile Network Carriers
  • Data services companies
  • Cloud services companies
  • Service Bureau Companies
  • Data infrastructure providers
  • Wireless Infrastructure Vendors
  • Network and application integrators
  • Intermediaries and mediation companies
  • Major enterprise and businesses of all types

Report Benefits:

  • Forecast for DaaS through 2020
  • Understand the DaaS ecosystem
  • Identify key players and strategies
  • Understand DaaS technologies and tools
  • Recognize the importance of data mediation
  • Understand data management best practices
  • Understand the importance of managed systems
  • Identify the relationship between DaaS and cloud
  • Telecom API marketplace forecasts for 2015 - 2020
  • Insights from Telecom API use cases and business cases
  • Understand the Telecom and Enterprise API marketplace
  • Understand key API technologies and inter-dependencies
  • Identify advantages of internal Telecom API usage to carriers
  • Identify the long-term growth drivers for the API marketplace
  • Understand how the API marketplace relates to the Cloud and DaaS
  • Understand the untapped potential for carrier Telecom API enabled VAS

Table of Contents

Data as a Service (DaaS) Market and Forecasts 2015 - 2020

1 Introduction

  • 1.1 Executive Summary
  • 1.2 Topics Covered
  • 1.3 Key Findings
  • 1.4 Target Audience

2 DaaS Technologies

  • 2.1 Cloud
  • 2.2 Database Approaches and Solutions
    • 2.2.1 Relational Database Management System (RDBS)
    • 2.2.2 NoSQL
    • 2.2.3 Hadoop
    • 2.2.4 High Performance Computing Cluster (HPCC)
    • 2.2.5 OpenStack
  • 2.3 DaaS and the XaaS Ecosystem
  • 2.4 Open Data Center Alliance
  • 2.5 Market Sizing by Horizontal

3 DaaS Market

  • 3.1 Market Overview
    • 3.1.1 Data-as-a-Service: A movement
    • 3.1.2 Data Structure
    • 3.1.3 Specialization
    • 3.1.4 Vendors
  • 3.2 Vendor Analysis and Prospects
    • 3.2.1 Large Vendors: BDaaS
    • 3.2.2 Mid-sized Vendors
    • 3.2.3 Small Vendors: DaaS and SaaS
    • 3.2.4 Market Size: BDaaS vs. RDBMS
  • 3.3 Market Drivers and Constraints
    • 3.3.1 Drivers
      • 3.3.1.1 Business Intelligence and DaaS Integration
      • 3.3.1.2 The Cloud Enabler DaaS
      • 3.3.1.3 XaaS Drives DaaS
    • 3.3.2 Constraints
    • 3.3.2.1 Issues Relating to Data-as-a-Service Integration
  • 3.4 Barriers and Challenges to DaaS Adoption
    • 3.4.1 Enterprises Reluctance to Change
    • 3.4.2 Responsibility of Data Security Externalized
    • 3.4.3 Security Concerns are Real
    • 3.4.4 Cyber Attacks
    • 3.4.5 Unclear Agreements
    • 3.4.6 Complexity is a Deterrent
    • 3.4.7 Lack of Cloud Interoperability
    • 3.4.8 Service Provider Resistance to Audits
    • 3.4.9 Viability of Third-party Providers
    • 3.4.10 No Move of Systems and Data is without Cost
    • 3.4.11 Lack of Integration Features in the Public Cloud results in Reduced Functionality
  • 3.5 Market Share and Geographic Influence
  • 3.6 Vendors
    • 3.6.1 1010data
    • 3.6.2 Amazon
    • 3.6.3 Clickfox
    • 3.6.4 Datameer
    • 3.6.5 Google
    • 3.6.6 Hewlett-Packard
    • 3.6.7 IBM
    • 3.6.8 Infosys
    • 3.6.9 Microsoft
    • 3.6.10 Oracle
    • 3.6.11 Rackspace
    • 3.6.12 Salesforce
    • 3.6.13 Splunk
    • 3.6.14 Teradata
    • 3.6.15 Tresata

4 DaaS Strategies

  • 4.1 General Strategies
    • 4.1.1 Tiered Data Focus
    • 4.1.2 Value-based Pricing
    • 4.1.3 Open Development Environment
  • 4.2 Specific Strategies
    • 4.2.1 Service Ecosystem and Platforms
    • 4.2.2 Bringing to Together Multiple Sources for Mash-ups
    • 4.2.3 Developing Value-added Services (VAS) as Proof Points
    • 4.2.4 Open Access to all Entities including Competitors
    • 4.2.5 Prepare for Big Opportunities with the Internet of Things (IoT)
  • 4.3 Service Provider Strategies
    • 4.3.1 Telecom Network Operators
    • 4.3.2 Data Center Providers
    • 4.3.3 Managed Service Providers
  • 4.4 Infrastructure Provider Strategies
    • 4.4.1 Enable New Business Models
  • 4.5 Application Developer Strategies

5 DaaS based Applications

  • 5.1 Business Intelligence
  • 5.2 Development Environments
  • 5.3 Verification and Authorization
  • 5.4 Reporting and Analytics
  • 5.5 DaaS in Healthcare
  • 5.6 DaaS and Wearable technology
  • 5.7 DaaS in the Government Sector
  • 5.8 DaaS for Media and Entertainment
  • 5.9 DaaS for Telecoms
  • 5.10 DaaS for Insurance
  • 5.11 DaaS for Utilities and Energy Sector
  • 5.12 DaaS for Pharmaceuticals
  • 5.13 DaaS for Financial Services

6 Market Outlook and Future of DaaS

  • 6.1 Recent Security Concerns
  • 6.2 Cloud Trends
    • 6.2.1 Hybrid Computing
    • 6.2.2 Multi-Cloud
    • 6.2.3 Cloud Bursting
  • 6.3 General Data Trends
  • 6.4 Enterprise Leverages own Data and Telecom
    • 6.4.1 Web APIs
    • 6.4.2 SOA and Enterprise APIs
    • 6.4.3 Cloud APIs
    • 6.4.4 Telecom APIs
  • 6.5 Data Federation Emerges for DaaS

7 Conclusions

8 Appendix

  • 8.1 Structured vs. Unstructured Data
    • 8.1.1 Structured Database Services in Telecom
    • 8.1.2 Unstructured Database Services in Telecom and Enterprise
    • 8.1.3 Emerging Hybrid (Structured/Unstructured) Database Services
  • 8.2 Data Architecture and Functionality
    • 8.2.1 Data Architecture
      • 8.2.1.1 Data Models and Modelling
      • 8.2.1.2 DaaS Architecture
    • 8.2.2 Data Mart vs. Data Warehouse
    • 8.2.3 Data Gateway
    • 8.2.4 Data Mediation
  • 8.3 Master Data Management (MDM)
    • 8.3.1 Understanding MDM
      • 8.3.1.1 Transactional vs. Non-transactional Data
      • 8.3.1.2 Reference vs. Analytics Data
    • 8.3.2 MDM and DaaS
      • 8.3.2.1 Data Acquisition and Provisioning
      • 8.3.2.2 Data Warehousing and Business Intelligence
      • 8.3.2.3 Analytics and Virtualization
      • 8.3.2.4 Data Governance
  • 8.4 Data Mining
    • 8.4.1 Data Capture
      • 8.4.1.1 Event Detection
      • 8.4.1.2 Capture Methods
    • 8.4.2 Data Mining Tools

Figures

  • Figure 2: Cloud Computing Service Model Stack and Principle Consumers
  • Figure 3: DaaS across Horizontal and Vertical Segments
  • Figure 8: Different Data Types and Functions in DaaS
  • Figure 9: Ecosystem and Platform Model
  • Figure 10: Ecosystem and Platform Model
  • Figure 11: DaaS and IoT Mediation for Smartgrid
  • Figure 12: Internet of Things (IoT) and DaaS
  • Figure 13: Telecom API Value Chain for DaaS
  • Figure 14: DaaS, Verification and Authorization
  • Figure 15: Web APIs
  • Figure 16: Services Oriented Architecture
  • Figure 17: Cloud Services, DaaS, and APIs
  • Figure 18: Telecom APIs
  • Figure 19: Federated Data vs. Non-Federated Models
  • Figure 20: Federated Data at Functional Level
  • Figure 21: Federated Data at City Level
  • Figure 22: Federated Data at Global Level
  • Figure 23: Federation Requires Mediation Data
  • Figure 24: Mediation Data Synchronization
  • Figure 25: Hybrid Data in Next Generation Applications
  • Figure 26: Traditional Data Architecture
  • Figure 27: Data Architecture Modeling
  • Figure 28: DaaS Data Architecture
  • Figure 29: Location Data Mediation
  • Figure 30: Data Mediation in IoT
  • Figure 31: Data Mediation for Smartgrids
  • Figure 32: Enterprise Data Types
  • Figure 33: Data Governance
  • Figure 34: Data Flow
  • Figure 35: Processing Streaming Data

Telecom API Marketplace: Strategy, Ecosystem, Players and Forecasts 2015 - 2020

1 Introduction

  • 1.1 Executive Summary
  • 1.2 Topics Covered
  • 1.3 Key Findings
  • 1.4 Target Audience
  • 1.5 Companies Mentioned

2 Telecom Network API Overview

  • 2.1 Defining Network APIs
  • 2.2 Why Carriers are Adopting Telecom Network APIs
    • 2.2.1 Need for New Revenue Sources
    • 2.2.2 B2B Services and Asymmetric Business Models
  • 2.3 Telecom Network API Categories
    • 2.3.1 Web Real-time Communications (WebRTC)
    • 2.3.2 SMS and RCS-E
    • 2.3.3 Presence
    • 2.3.4 MMS
    • 2.3.5 Location
    • 2.3.6 Payments
    • 2.3.7 Voice/Speech
    • 2.3.8 Voice Control
    • 2.3.9 Multimedia Voice Control
    • 2.3.10 M2M
    • 2.3.11 SDM/Identity Management
    • 2.3.12 Subscriber Profile
    • 2.3.13 QoS
    • 2.3.14 ID/SSO
    • 2.3.15 Content Delivery
    • 2.3.16 Hosted UC
    • 2.3.17 Directory
    • 2.3.18 Number Provisioning
    • 2.3.19 USSD
    • 2.3.20 Billing of Non-Digital Goods
    • 2.3.21 Advertising
    • 2.3.22 Collaboration
    • 2.3.23 IVR/Voice Store
  • 2.4 Telecom Network API Business Models
    • 2.4.1 Two-Sided Business Model
    • 2.4.2 Exposing APIs to Developers
    • 2.4.3 Web Mash-ups
  • 2.5 Segmentation
    • 2.5.1 Users by Segment
    • 2.5.2 Workforce Management
  • 2.6 Competitive Issues
    • 2.6.1 Reduced TCO
    • 2.6.2 Open APIs
    • 2.6.3 Configurability
  • 2.7 Percentage of Applications that use APIs
  • 2.8 Telecom API Revenue Potential
    • 2.8.1 Standalone API Revenue vs. Finished Goods Revenue
    • 2.8.2 Telecom API-enabled Mobile VAS Applications
    • 2.8.3 Carrier Focus on Telecom API's for the Enterprise
  • 2.9 Telecom Network API Usage by Industry Segment
  • 2.10 Telecom Network API Value Chain
    • 2.10.1 Telecom API Value Chain
    • 2.10.2 How the Value Chain Evolve
    • 2.10.3 API Transaction Value Split among Players
  • 2.11 Cost for Different API Transactions
  • 2.12 Volume of API Transactions

3 API Aggregation

  • 3.1 The Role of API Aggregators
  • 3.2 Total Cost Usage for APIs with Aggregators
    • 3.2.1 Start-up Costs
    • 3.2.2 Transaction Costs
    • 3.2.3 Ongoing Maintenance/Support
    • 3.2.4 Professional Services by Intermediaries
  • 3.3 Aggregator API Usage by Category
    • 3.3.1 An LBS Case Study: LOC-AID
    • 3.3.2 Aggregation: Intersection of Two Big Needs
    • 3.3.3 The Case for Other API Categories
    • 3.3.4 Moving Towards New Business Models

4 Enterprise and Telecom API Marketplace

  • 4.1 Data as a Service (DaaS)
    • 4.1.1 Carrier Structured and Unstructured Data
    • 4.1.2 Carrier Data Management in DaaS
    • 4.1.3 Data Federation in the DaaS Ecosystem
  • 4.2 API Market Makers
    • 4.2.1 mashape
    • 4.2.2 Mulesoft
  • 4.3 Need for a New Type of Application Marketplace: CAM
    • 4.3.1 Communications-enabled App Marketplace (CAM)
    • 4.3.2 CAM Market Opportunities and Challenges

5 Telecom API Enabled App Use Cases

  • 5.1 Monetization of Communications-enabled Apps
    • 5.1.1 Direct API Revenue
    • 5.1.2 Data Monetization
    • 5.1.3 Cost Savings
    • 5.1.4 Higher Usage
    • 5.1.5 Churn Reduction
  • 5.2 Use Case Issues
    • 5.2.1 Security
    • 5.2.2 Interoperability

6 Non-Telecom Network APIs and Mash-ups

  • 6.1 Non-Telecom Network APIs
    • 6.1.1 Twitter
    • 6.1.2 Netflix API
    • 6.1.3 Google Maps
    • 6.1.4 Facebook
    • 6.1.5 YouTube
    • 6.1.6 Flickr
    • 6.1.7 eBay
    • 6.1.8 Last.fm
    • 6.1.9 Amazon Web Services
    • 6.1.10 Bing Maps
    • 6.1.11 Yahoo Web Search API
    • 6.1.12 Shopping.com
    • 6.1.13 Salesforce.com
  • 6.2 Mash-ups
    • 6.2.1 BBC News on Mobile
    • 6.2.2 GenSMS emailSMS
    • 6.2.3 Foursquare
    • 6.2.4 Amazon SNS and Nexmo
    • 6.2.5 Triage.me
    • 6.2.6 MappyHealth
    • 6.2.7 Lunchflock
    • 6.2.8 Mobile Time Tracking
    • 6.2.9 Fitsquare
    • 6.2.10 GeoSMS
    • 6.2.11 FONFinder
    • 6.2.12 Pound Docs
    • 6.2.13 140Call
    • 6.2.14 Salesforce SMS

7 Carrier Strategies

  • 7.1 Carrier Market Strategy and Positioning
    • 7.1.1 Increasing API Investments
    • 7.1.2 The Rise of SDM
    • 7.1.3 Telecom API Standardization
    • 7.1.4 Carrier Attitudes towards APIs: U.S vs. Asia Pacific and Western Europe
  • 7.2 Carrier API Programs Worldwide
    • 7.2.1 AT&T Mobility
    • 7.2.2 Verizon Wireless
    • 7.2.3 Vodafone
    • 7.2.4 France Telecom
    • 7.2.5 Telefonica
  • 7.3 Carriers and Internal Telecom API Usage
    • 7.3.1 The Case for Internal Usage
    • 7.3.2 Internal Telecom API Use Cases
  • 7.4 Carriers and OTT Service Providers
    • 7.4.1 Allowing OTT Providers to Manage Applications
    • 7.4.2 Carriers Lack the Innovative Skills to Capitalize on APIs Alone
  • 7.5 Carriers and Value-added Services (VAS)
    • 7.5.1 The Role and Importance of VAS
    • 7.5.2 The Case for Carrier Communication-enabled VAS
    • 7.5.3 Challenges and Opportunities for Carriers in VAS

8 API enabled App Developer Strategies

  • 8.1 A Critical Asset to Developers 106
  • 8.2 Stimulating the Growth of API Releases
  • 8.3 Working alongside Carrier Programs
  • 8.4 Developer Preferences: Google vs Carriers

9 Telecom API Vendor Strategies

  • 9.1 Positioning as Enablers in the Value Chain
  • 9.2 Moving Away from a Box/Product Supplier Strategy
  • 9.3 Telecom API Companies and Solutions
    • 9.3.1 Alcatel Lucent
    • 9.3.2 UnboundID
    • 9.3.3 Twilio
    • 9.3.4 LOC-AID
    • 9.3.5 Placecast
    • 9.3.6 Samsung
    • 9.3.7 AT&T Mobility
    • 9.3.8 Apigee
    • 9.3.9 2600 Hz
    • 9.3.10 Callfire
    • 9.3.11 Plivo
    • 9.3.12 Tropo (now part of Cisco)
    • 9.3.13 Urban Airship
    • 9.3.14 Voxeo (now Aspect Software)
    • 9.3.15 TeleStax
    • 9.3.16 Intel
    • 9.3.17 Competitive Differentiation

10 Market Analysis and Forecasts

  • 10.1 Telecom Network API Revenue 2015 - 2020
  • 10.2 Telecom Network APIs Revenue by API Category 2015 - 2020
    • 10.2.1 Messaging API Revenues
    • 10.2.2 LBS API Revenues
    • 10.2.3 SDM API Revenues
    • 10.2.4 Payment API Revenues
    • 10.2.5 Internet of Things (IoT) API Revenues
    • 10.2.6 Other API Revenues
  • 10.3 Telecom API Revenue by Region 2015 - 2020
    • 10.3.1 Asia Pacific
    • 10.3.2 Eastern Europe
    • 10.3.3 Latin & Central America
    • 10.3.4 Middle East & Africa
    • 10.3.5 North America
    • 10.3.6 Western Europe

11 Technology and Market Drivers for Future API Market Growth

  • 11.1 Service Oriented Architecture (SOA)
  • 11.2 Software Defined Networks (SDN)
  • 11.3 Virtualization
    • 11.3.1 Network Function Virtualization (NFV)
    • 11.3.2 Virtualization beyond Network Functions
  • 11.4 The Internet of Things (IoT)
    • 11.4.1 IoT Definition
    • 11.4.2 IoT Technologies
    • 11.4.3 IoT Applications
    • 11.4.4 IoT Solutions
    • 11.4.5 IoT, DaaS, and APIs (Telecom and Enterprise)

12 Expert Opinion: TeleStax

13 Expert Opinion: Twilio

14 Expert Opinion: Point.io

15 Expert Opinion: Nexmo

16 Appendix

  • 16.1 Research Methodology
  • 16.2 Telecom API Definitions
  • 16.3 More on Telecom APIs and DaaS
    • 16.3.1 Tiered Data Focus
    • 16.3.2 Value-based Pricing
    • 16.3.3 Open Development Environment
    • 16.3.4 Specific Strategies
      • 16.3.4.1 Service Ecosystem and Platforms
      • 16.3.4.2 Bringing to Together Multiple Sources for Mash-ups
      • 16.3.4.3 Developing Value-added Services (VAS) as Proof Points
      • 16.3.4.4 Open Access to all Entities including Competitors
      • 16.3.4.5 Prepare for Big Opportunities with the Internet of Things (IoT)

Figures

  • Figure 1: Wireless Carrier Assets
  • Figure 2: Telecom API: Standalone vs. Finished Services
  • Figure 3: RCS and Telecom API Integration
  • Figure 4: RCS Revenue Forecast
  • Figure 5: Business vs. Consumer Telecom API Focus
  • Figure 6: Enterprise Dashboard
  • Figure 7: Enterprise Dashboard App Example
  • Figure 8: Telecom Network API Value Chain
  • Figure 9: Value Split among Aggregators, Carriers and Enterprise for API Transactions: 2012 - 2019
  • Figure 10: API Transaction Costs (US Cents) 2012 - 2019
  • Figure 11: Volume of API Transactions for a Tier 1 Carrier (Billions per Month): 2015 - 2020
  • Figure 12: Cloud Services and APIs
  • Figure 13: GSMA OneAPI: Benefits to Stakeholders
  • Figure 14: AT&T Wireless API Catalog
  • Figure 15: Verizon Wireless API Program
  • Figure 16: France Telecom (Orange) APIs
  • Figure 17: Telefonica APIs
  • Figure 18: Carrier Internal Use of Telecom APIs
  • Figure 19: UnboundID's Portfolio of Services
  • Figure 20: Twilio's Portfolio of Services
  • Figure 21: LOC-AID Exchange Server Architecture
  • Figure 22: Placecast's ShopAlerts Solution
  • Figure 23: Apigee Portfolio of Services
  • Figure 24: Telecom API Revenue (USD Billions) 2015 - 2020
  • Figure 25: Telecom API Revenue (USD Billions) by API Category 2015 - 2020
  • Figure 26: Messaging APIs Revenue (USD Billions) 2015 - 2020
  • Figure 27: LBS APIs Revenue (USD Billions) 2015 - 2020
  • Figure 28: SDM APIs Revenue (USD Billions) 2015 - 2020
  • Figure 29: Payment APIs Revenue (USD Billions) 2015 - 2020
  • Figure 30: IoT API Revenue (USD Billions) 2015 - 2020
  • Figure 31: APIs Revenue for Other Categories (USD Billions) 2015 - 2020
  • Figure 32: Telecom API Revenue (USD Billions) by Region 2015 - 2020
  • Figure 33: Telecom API Revenue (USD Billions) Asia Pacific 2015 - 2020
  • Figure 34: Telecom API Revenue (USD Billions) Eastern Europe 2015 - 2020
  • Figure 35: Telecom API Revenue (USD Billions) Latin & Central America 2015 - 2020
  • Figure 36: Telecom API Revenue (USD Billions) Middle East & Africa 2015 - 2020
  • Figure 37: Telecom API Revenue (USD Billions) North America 2015 - 2020
  • Figure 38: Telecom API Revenue (USD Billions) Western Europe 2015 - 2020
  • Figure 39: Services Oriented Architecture
  • Figure 40: Growth of Connected Devices
  • Figure 41: IoT and Telecom API Topology
  • Figure 42: Telestax App Store Funnel
  • Figure 43: On-Premise vs. Twilio
  • Figure 44: Point.io and API Ecosystem
  • Figure 45: Different Data Types and Functions in DaaS
  • Figure 46: Ecosystem and Platform Model
  • Figure 47: Telecom API and Internet of Things Mediation
  • Figure 48: DaaS and IoT Mediation for Smartgrid
Back to Top