Cover Image
市場調查報告書

能源採集:從離網微瓦到兆瓦2017-2027年

Energy Harvesting: Off-grid Microwatt to Megawatt 2017-2027

出版商 IDTechEx Ltd. 商品編碼 360964
出版日期 內容資訊 英文 169 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
能源採集:從離網微瓦到兆瓦2017-2027年 Energy Harvesting: Off-grid Microwatt to Megawatt 2017-2027
出版日期: 2016年08月30日 內容資訊: 英文 169 Slides
簡介

本報告以能源採集 (能源採集) 市場為焦點,提供現在、未來的應用及技術相關詳細分析,各技術概要,優點,課題等彙整資料。

第1章 摘要整理、結論

第2章 簡介

第3章 現在及未來的應用

  • 簡介
  • 能源採集一般在哪裡使用?
  • 地區性的差異
  • 能源採集屢次被投入,之後被放棄
  • 大樓管理、BIPV、通訊用IoT、當地電網
  • 汽車的利用
  • 廠商

第4章 技術、系統

  • 概要
  • 選擇比較

第5章 技術:電動力型

  • 概要
  • 旋轉式電動機器技術的選擇
  • 空中風力發電 (AWE)
  • 典型性的動力傳動零組件及再生式煞車
  • 汽車的整合趨勢
  • 人力的電動力型收集
  • 電動力型振動的能源採集
  • 電動力再生減震器及電源內藏主動式懸吊
  • 飛輪儲能式KERS (動能回收系統) vs. 馬達回生式剎車
  • 3D、6D機芯
  • 汽車的下一代馬達發電機,渦輪機能源採集

第6章 技術:太陽能光電發電

  • 概要
  • PN結 vs. 替代
  • 晶圓 vs. 薄膜
  • 重要的太陽能光電發電參數
  • 矽之外的幾個選項比較
  • 可捲、折疊、伸縮的PV來臨
  • OPV

第7章 技術:熱電

  • 熱電發電機 (TEG)的基本、製造
  • 活物質的選擇
  • 薄膜TE的優點
  • 汽車TEG
  • 母線、熱管上的電動感測器收發器
  • 高功率熱電:數十瓦
  • 高功率熱電:KW

第8章 技術:壓電

  • 概要
  • 活性材料
  • 壓電效應
  • 家電
  • 薄膜的優點
  • 合成橡膠的優點:KAIST (韓國)
  • 震動發電設備
  • 高功率壓電的課題

第9章 電容

  • 原理
  • 合成橡膠的整合
  • 電容式彈性
  • MEMS電容式scavenger

第10章 磁致伸縮、微生物、天線

  • 磁致伸縮
  • 微生物燃料電池
  • 天線二極體

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

This unique report of detailed analysis is easily grasped because many new infographics and forecasts are presented. No other analysis looks at the complete picture from microwatts for autonomous sensors to megawatts off grid for community power. The executive summary and conclusions appraises the results of the intense global travel schedule of the PhD level analyst team researching the subject in 2016 with ongoing updates. Extensive interviews were carried out in various languages plus global conference attendance and assessment of privileged information from the IDTechEx events on the subject. IDTechEx analysts have studied energy harvesting for 15 years and have seen the trends.

The report has an introduction looking critically at the successes and failures, the overall situation and the companies and universities involved. An extensive chapter on applications reveals how an aircraft or a house for example, has need of energy harvesting producing a whisper of electricity for small electronic devices such as MEMS up to large power levels for moving, cooking, heating etc. The commonality is revealed by the technologies and companies involved. We consider the four leading technologies - electrodynamics, photovoltaics, piezoelectrics and thermoelectrics - forecasting them by numbers and market value to 2027. The report explains how curiosities such as electret, capacitive, triboelectric and magnetostriction forms of EH now looks good in trials for many uses.

"Energy Harvesting: Off-grid Microwatt to Megawatt 2017-2027" predicts winners and losers in applications and technologies for EH and lists many companies involved with critical assessment of where the billion dollar business will emerge and what are the dead ends. What EH will be adopted in for wearable technology? Why are the Internet of Things, microgrids, Energy Independent Electric Vehicles EIV and other emerging hot topics impacted? How is multimode energy harvesting and energy harvesting without energy storage progressing? What hope is there of avoiding the many toxic materials involved in EH? What EH is powered by legal push and what is reverting back to batteries? What are the radically new forms of photovoltaics and electrodynamics all about such as solar roads and Airborne Wind Energy AWE? It is all here, replete with examples and simple explanations.

There are huge opportunities for materials companies in all this, from inorganics to composites and organics as we move to structural electronics - a materials play - instead of "components in a box". The report explains how, why, where and when.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition
  • 1.2. Features of EH
  • 1.3. Low power vs high power off-grid
  • 1.4. Types of EH energy source
  • 1.5. Ford and EPA assessment of regeneration potential in a car
  • 1.6. Candidates for EH by power
  • 1.7. EH transducer options compared
  • 1.8. Energy storage technologies in comparison
  • 1.9. EH system architecture
  • 1.10. Energy Harvesting Maturity
  • 1.11. Market forecasts 2017-2027
    • 1.11.1. Global market for energy harvesting transducers (units million) 2016-2027 rounded
    • 1.11.2. Global market for energy harvesting transducers (unit price dollars) 2016-2027
    • 1.11.3. Global market for energy harvesting transducers (market value billion dollars) 2016-2027 rounded

2. INTRODUCTION

  • 2.1. Popularity 2015-2025
  • 2.2. Market drivers
  • 2.3. History of energy harvesting
  • 2.4. Problems that are opportunities

3. APPLICATIONS NOW AND IN FUTURE

  • 3.1. Introduction
    • 3.1.1. Energy harvesting is an immature industry
    • 3.1.2. IFEVS EIV self-powers travel, oven, lighting
  • 3.2. Where is EH used in general?
    • 3.2.1. Examples of energy harvesting by power level
    • 3.2.2. Hype and success: applications
    • 3.2.3. Some EH applications by location
    • 3.2.4. Power needs of electronic and electrical products
  • 3.3. Regional differences
  • 3.4. EH is sometimes introduced then abandoned
  • 3.5. Building control, BIPV, IOT for communities, local grid
    • 3.5.1. Introduction
    • 3.5.2. Building controls: EnOcean
    • 3.5.3. Building integrated photovoltaics BIPV
    • 3.5.4. In communities: IOT
    • 3.5.5. In communities: microgrid
  • 3.6. Uses in vehicles
    • 3.6.1. Land water and air: low to high power
    • 3.6.2. EV end game: Energy Independent Vehicles EIV
    • 3.6.3. Immortus Australia
    • 3.6.4. MARS UK 7kph solar unlimited or sail autonomous
    • 3.6.5. EIV operational choices
    • 3.6.6. Key EIV technologies
    • 3.6.7. EIVs - more than adding something to a vehicle
    • 3.6.8. New EIVs are being announced all the time
    • 3.6.9. Stella Lux passenger car Netherlands
    • 3.6.10. Resolution and EVA solar racers University of Cambridge, UK
    • 3.6.11. Vinerobot micro EIV
    • 3.6.12. Extreme lightweighting: Solar Ship EIV inflatable fixed wing aircraft Canada Autonomous, sun alone
    • 3.6.13. Northrop Grumman surveillance airship up for 10 years $917 million
  • 3.7. Transitional options to EIV
  • 3.8. Manufacturers

4. TECHNOLOGIES AND SYSTEMS

  • 4.1. Overview
  • 4.2. Comparison of options
    • 4.2.1. Intermittent power generated
    • 4.2.2. Roadmap for low power EH: Bosch
    • 4.2.3. EH transducer options compared
    • 4.2.4. Potential efficiency
    • 4.2.5. Hype and success - technology
    • 4.2.6. Parameters
  • 4.3. Multi-modal harvesting today
    • 4.3.1. Evolution of multi-modal EH
    • 4.3.2. Integrated multi-modal: European Commission Powerweave project etc
    • 4.3.3. Multimode harvesting even in woven fibers: Hybrid piezo photovoltaic material
    • 4.3.4. Harvest energy from sun, wind, rain, tides...
    • 4.3.5. Applications

5. TECHNOLOGY: ELECTRODYNAMIC

  • 5.1. Overview
  • 5.2. Choices of rotating electrical machine technology
  • 5.3. Airborne Wind Energy AWE
    • 5.3.1. TwingTec Switzerland 10 kW+, Ampyx Power
    • 5.3.2. Google Makhani AWE 600kW trial, Enerkite
  • 5.4. Typical powertrain components and regenerative braking
  • 5.5. Trend to integration in vehicles
  • 5.6. Human-powered electrodynamic harvesting
    • 5.6.1. Knee Power
  • 5.7. Electrodynamic vibration energy harvesting
    • 5.7.1. Overview
    • 5.7.2. Typical vibration sources encountered
  • 5.8. Electrodynamic regenerative shock absorbers and self-powered active suspension
  • 5.9. Flywheel KERS vs motor regen. braking
  • 5.10. 3D and 6D movement
  • 5.11. Next generation motor generators, turbine EH in vehicles

6. TECHNOLOGY: PHOTOVOLTAICS

  • 6.1. Overview
  • 6.2. pn junction vs alternatives
  • 6.3. Wafer vs thin film
  • 6.4. Important photovoltaic parameters
  • 6.5. Some choices beyond silicon compared
  • 6.6. Tightly rollable, foldable, stretchable PV will come
  • 6.7. OPV

7. TECHNOLOGY: THERMOELECTRICS

  • 7.1. Overview
  • 7.2. Basis and fabrication of thermoelectric generators TEG
  • 7.3. Choice of active materials
  • 7.4. Benefits of Thin Film TE
  • 7.4.1. Skutterudite
  • 7.5. TEG systems
  • 7.6. Automotive TEG
  • 7.7. Powering sensor transceivers on bus bars and hot pipes
  • 7.8. High power thermoelectrics: tens of watts
  • 7.8.1. Powerpot TE phone charger for camping
  • 7.9. High power thermoelectrics: kilowatt

8. TECHNOLOGY: PIEZOELECTRICS

  • 8.1. Overview
    • 8.1.1. Much piezo research but few successful applications: sample of developers and researchers
  • 8.2. Active materials
    • 8.2.1. Overview
    • 8.2.2. Exceptional piezo performance announced 2016
  • 8.3. Piezo Effect - Direct
  • 8.4. Piezo Effect - Converse
  • 8.5. Piezo options compared
  • 8.6. Piezo in cars - potential
  • 8.7. Piezo EH powered tyre sensor
  • 8.8. Piezo EH in helicopter
  • 8.9. Consumer Electronics
  • 8.10. Benefits of Thin Film
  • 8.11. Benefits of elastomer: KAIST Korea
  • 8.12. Vibration energy harvester (Joule Thief)
  • 8.13. Challenges with high power piezoelectrics

9. CAPACITIVE ELECTROSTATIC

  • 9.1. Principle
  • 9.2. Interdigitated to elastomer
  • 9.3. Capacitive flexible
  • 9.4. MEMS Electrostatic Scavengers
    • 9.4.1. Advanced MEMS capacitive vibration harvester in 2016

10. MAGNETOSTRICTIVE, MICROBIAL, NANTENNA

  • 10.1. Magnetostrictive
  • 10.2. Microbial fuel cells
  • 10.3. Nantenna-diode

11. TRIBOELECTRIC

  • 11.1. Definition
  • 11.2. Triboelectric dielectric series
  • 11.3. Triboelectric dielectric series examples showing wide choice of properties
  • 11.4. Triboelectric nanogenerator (TENG)
  • 11.5. Achievement
  • 11.6. Four ways to make a TENG
    • 11.6.1. Overview
    • 11.6.2. TENG modes with advantages, potential uses
    • 11.6.3. Research focus on the four modes
    • 11.6.4. Parametric advantages and challenges of triboelectric EH
Back to Top