Cover Image
市場調查報告書

有人電力飛機 (MEA) 市場:2017-2027年

Manned Electric Aircraft 2017-2027

出版商 IDTechEx Ltd. 商品編碼 357119
出版日期 內容資訊 英文 221 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
有人電力飛機 (MEA) 市場:2017-2027年 Manned Electric Aircraft 2017-2027
出版日期: 2017年08月09日 內容資訊: 英文 221 Slides
簡介

本報告提供有人電力飛機 (MEA) 市場長期性展望調查,提供MEA化的理由,MEA的課題與市場機會,構成MEA的主要技術概要及技術部門別趨勢,彙整獨立能源交通工具 (EIV) 的可能性,MEA銷售台數·價格的預測,主要經營者的配合措施範例等資料。

第1章 執行摘要、總論

第2章 簡介

  • 過去吸取的經驗
  • 目前情形
  • 其他範例:提供一個機體複數的動力傳動選擇趨勢
  • 第一個商用4人座混合電力飛機
  • 比試:新的電池、燃料電池面板
  • HY4 4人座燃料電池飛機的DLR專案
  • Airbus新的自主型飛機
  • 零排放航空運輸 - 4人座飛機HY4的首航
  • Zee.Aero 第一個電力、VOTL飛機
  • Hamilton的特技飛機
  • Airbus的飛行汽車原型於2017年年底準備就緒
  • Zunum-Boeing
  • Uber的空中計程車
  • 飛行計程車
  • Zee.Aero於2017年飛行
  • 豐田汽車在日本「援助飛行車專案」
  • chAIR

第3章 動力傳動的各種類型

  • 電子動力傳動是什麼?
  • 是純電動還是混合?
    • 案例:PC Aero Elektra One
    • 案例:E-Genius, SUGAR Volt
  • 混合電力飛機的各種類型
    • 並聯混合
    • 串聯式油電混合
  • 典型混合運轉週期及其案例
    • 工作週期
    • Bye Aerospace及XTI USA
    • Cambridge University Song hybrid
    • Equator P2 Xcursion
    • 生質燃料太陽能混合
    • DARPA VTOL
  • Airbus的混合電力飛機:概要
  • 輕度 vs 斯特朗混合:汽車吸取的經驗
  • EV動力傳動及技術預測
  • 獨立能源型電動車 (EIV)
  • 主要EIV技術
  • 馬達和馬達生成器
  • Range extenders(增程器)

第4章 能源儲存

  • 選項
  • 電動車在能源儲存技術所扮演的角色
  • 強化鋰離子電池的安全
  • 各種系統的運行原理
  • 從超級電容器儲能到鋰離子電池
  • 未來的混合&純電動機和能源儲存選項的選配:其他產業的教訓
    • 未來的能源儲存選擇的製圖
  • 鋰離子電池與超級電容器儲能
  • 利用結構性電子的超輕量化

第5章 能源採集和能源的再生

  • 定義和背景
  • Faradair BEHA

第6章 獨立能源交通工具 (EIV)

  • 獨立能源型電動車
  • 尚無大型混合電力
  • 傳統飛機的電力電子技術
  • 客機的地上電動車化
  • 迴轉電子機械和電力電子技術的改良之大潛力
  • 未來的設計:NASA的見解等

第7章 飛行車:需要嗎?可能嗎?

  • 飛行車:需要嗎?可能嗎?
  • Aeromobil的飛行車:斯洛伐克產的飛行車? <
  • 空中及GyroDrive
  • 豐田:燃料電池或飛行車?
  • 比賽是否已開跑?
  • 在機場行駛飛行車
  • 只有單人座可行?
  • 有效解決城市的交通堵塞: 更好的替代方案
  • 油電混合VTOL飛行車的可行性
  • Elon Musk, Larry Page及Nikhil Goel

第8章 CAFE TENTH ELECTRIC AIRCRAFT SYMPOSIUM REPORT

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

This report of over 190 slide format pages is replete with new forecasts, analysis and infographics seeing the future. The key parts of recent presentations by all the key players are embedded in this work, almost entirely researched in 2016 and early 2017 by award winning PhD level IDTechEx analysts travelling worldwide. Interviews, IDTechEx databases, web searches and conference attendance were extensively used. Old information is useless in this now fast moving field.

The structure of the report is a comprehensive Executive Summary and Conclusions then Introduction looking at lessons from the past then chapters on types of powertrain involved, motors and motor generators, energy storage, energy harvesting and regeneration, the end game of Energy Independent Electric Vehicles EIV and finally More Electric Aircraft MEA programs and how they are migrating to electric aircraft. Throughout there are many examples of electric aircraft from airships to helicopters and microlights, both for sale and planned. Specifications are given for many of these and key components for the future are discussed in depth. The tone is critical not evangelical.

The coverage in the report includes 2017-2027 forecasts of low and high priced electric aircraft sales by number, unit price and market value and a view of figures up to 2031 including assessments by several leading players. The subject matter includes looking at how electric aircraft have largely followed electric land and water vehicles. Pure electric small ones appeared first, about 50 years after the first electric boats and cars. Hybrid ones are needed for the longer distances and tougher duty cycles and only now are these getting serious investment. The report finds that the delays are only partly explained by the tougher demands and regulatory requirements of aircraft and how things are now changing with much larger commitments. In 2016, Siemens and Airbus agreed to pool 200 engineers to work on them, the level of effort Toyota allotted to hybrid cars twenty years earlier, with major commercial success resulting today. Toyota enjoys well over $20 billion dollars of sales of electric cars, buses and forklifts with Honda and BMW successful too - interesting because all three are now tackling aircraft. Indeed, Google and Facebook are involved in electric cars and aircraft and Apple is interested so it is wake up time. The report analyses the opportunities in new aircraft and their changing key components.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Unique approach of this report
  • 1.2. Some important findings
  • 1.3. Why go electric for manned aircraft?
  • 1.4. How to transition to electric aircraft: MEA, hybrid, pure electric
    • 1.4.1. Airbus Vahana flying car announcement 2017
  • 1.5. MEA issues and opportunities
  • 1.6. Where electric aircraft are headed: range anxiety to range superiority
  • 1.7. Manned aircraft lagged land-based electric vehicles
    • 1.7.1. SolarStratos
    • 1.7.2. Aviation a follower in electrification but upturn arrives
    • 1.7.3. Hybrids should have been first
    • 1.7.4. Hybrids: running before you can walk
  • 1.8. Trend to larger electric aircraft
    • 1.8.1. Overview of major issues
    • 1.8.2. Viability of pure electric larger aircraft: timeline
  • 1.9. Electrification of aircraft in general: rapid progress
  • 1.10. Electric aircraft already commercialised
    • 1.10.1. Examples
    • 1.10.2. Sun Flyer 4
    • 1.10.3. Viability of electric primary trainers already
  • 1.11. Routes to further commercialisation of electric aircraft
    • 1.11.1. Example - Lilium ultralight VTOL aircraft prototype
  • 1.12. Pure electric manned aircraft arriving
    • 1.12.1. Examples: Powered paraglider Skyrider One and Volocopter
    • 1.12.2. Examples: Airbus E-Fan
  • 1.13. Hybrid electric aircraft arriving
    • 1.13.1. HYPSTAIR powertrain for general aviation
    • 1.13.2. Hybrid electric helicopters, multicopters
    • 1.13.3. Airbus eThrust concept with DEP
    • 1.13.4. NASA Sceptor concept with DEP
    • 1.13.5. Magnus eFusion Light Sport E-Plane
  • 1.14. Siemens 260 kW electric aircraft motor makes first public flight
  • 1.15. Retrofit: Ampaire
  • 1.16. Choice of powertrains is influenced by many factors
  • 1.17. New end game: Energy Independent Vehicles EIV
  • 1.18. Key enabling technologies in future: examples
    • 1.18.1. Energy harvesting including regeneration
    • 1.18.2. Structural electronics tears up the rule book
    • 1.18.3. Power electronics and other key enablers
  • 1.19. Less mechanics: more electronics
  • 1.20. Becoming one business land, water, air - hybrid and pure electric
  • 1.21. Regulations have impeded small e-aircraft in the USA
  • 1.22. Ambition and freedom in Europe
  • 1.23. Progress in East Asia
    • 1.23.1. China
    • 1.23.2. Japan
  • 1.24. Market forecasts
    • 1.24.1. Timelines 2016-2031: IDTechEx, Airbus, Rolls Royce, others
    • 1.24.2. MEA target and roadmaps converge to EV for 2035
    • 1.24.3. Manned electric aircraft and airliner forecasts
    • 1.24.4. Manned electric aircraft market forecasts 2016-2026 including hybrid
    • 1.24.5. USA has huge buildup of old small aircraft and issues
  • 1.25. Hybrid electric plane could cut pollution

2. INTRODUCTION

  • 2.1. Lessons from the past
  • 2.2. Situation today
  • 2.3. Other examples: trend to offering several powertrain options in one airframe
  • 2.4. First commercial four seat hybrid
  • 2.5. Contest in 2015: new battery and fuel cell planes
  • 2.6. DLR project for HY4 four-passenger fuel cell aircraft
  • 2.7. New Airbus autonomous aircraft November 2016
  • 2.8. Zero-emission air transport - first flight of four-seat passenger aircraft HY4 - September 2016
  • 2.9. The first electric and VTOL aircraft by Zee.Aero - October 2016
  • 2.10. Hamilton aerobatic aircraft
  • 2.11. Airbus flying car prototype ready by the end of 2017
  • 2.12. Zunum-Boeing
  • 2.13. Uber air taxis
  • 2.13.1. Aurora eVTOL USA
  • 2.14. Air taxis - the legal position
  • 2.15. Zee.Aero flies in 2017
  • 2.16. Toyota 'backs flying car project' in Japan
  • 2.17. chAIR

3. TYPES OF POWERTRAIN

  • 3.1. What is an electric powertrain?
  • 3.2. Pure electric or hybrid
    • 3.2.1. Example: PC Aero Elektra One
    • 3.2.2. Examples: E-Genius, SUGAR Volt
  • 3.3. Types of hybrid electric aircraft
    • 3.3.1. Parallel hybrid
    • 3.3.2. Series hybrid
  • 3.4. Typical hybrid duty cycle and examples
    • 3.4.1. Duty cycle
    • 3.4.2. Bye Aerospace and XTI USA
    • 3.4.3. Cambridge University Song hybrid
    • 3.4.4. Equator P2 Xcursion amphibious aircraft
    • 3.4.5. Biofuel solar hybrid
    • 3.4.6. DARPA VTOL
  • 3.5. Airbus overview of hybrid electric aircraft
  • 3.6. Mild vs strong hybrid: lessons from land vehicles
  • 3.7. EV powertrains and technology forecasts: 2000
  • 3.8. EV powertrains and technology forecasts: 2016
  • 3.9. EV powertrains and technology forecasts: 2017 onwards
  • 3.10. Energy independent electric vehicles EIV operational choices
  • 3.11. Key EIV technologies
  • 3.12. Motors and motor generators
    • 3.12.1. Trend to higher power to weight ratio
    • 3.12.2. Technologies in context of all EVs
    • 3.12.3. Electrical engine start for hybrid electric aircraft
    • 3.12.4. Integrated components - in-wheel
    • 3.12.5. Multimotor designs
    • 3.12.6. Superconducting propulsors and interconnects
  • 3.13. Range extenders
    • 3.13.1. Overview
    • 3.13.2. Gas turbines and rotary combustion engines
    • 3.13.3. Fuel cells

4. ENERGY STORAGE

  • 4.1. Options
  • 4.2. The role of energy storage technologies in electric vehicles
  • 4.3. Making lithium-ion batteries safer
  • 4.4. Operational Principles of Different Systems
  • 4.5. Supercapacitors to Li-ion batteries - a spectrum of functional tailoring
  • 4.6. Matching future hybrid and pure electric aircraft to energy storage choices. Learning from other industries
    • 4.6.1. Map of energy storage choices 2026-2036
  • 4.7. Supercapacitors across lithium-ion batteries
  • 4.8. Extreme lightweighting by structural electronics
    • 4.8.1. Earlier attempts at structural fuel; cells, batteries and capacitors
    • 4.8.2. Successful supercapacitor bodywork
    • 4.8.3. Many other types of structural electronics for aircraft

5. ENERGY HARVESTING AND REGENERATION

  • 5.1. Definitions and background
  • 5.2. Faradair BEHA

6. ENERGY INDEPENDENT VEHICLES EIV

  • 6.1. Energy independent electric vehicles
    • 6.1.1. Why we want more than mechanical energy independence
    • 6.1.2. The EIV powertrain
    • 6.1.3. EIV operational choices
    • 6.1.4. Turtle airship USA
    • 6.1.5. Solar Impulse Switzerland
    • 6.1.6. Solar Ship inflatable fixed wing aircraft Canada
    • 6.1.7. Sunstar USA
    • 6.1.8. Sunseeker Duo USA
    • 6.1.9. Eviation and their All-Electric Aircraft
    • 6.1.10. The More Electric Aircraft MEA
  • 6.2. Not there yet for large hybrids
  • 6.3. Power electronics in conventional aircraft
  • 6.4. Airliner becomes an electric vehicle when on the ground
  • 6.5. Great potential to improve rotating electrical machines and power electronics
  • 6.6. Future design space: NASA view

7. FLYING CARS: NEEDED OR POSSIBLE?

  • 7.1. Flying cars: needed or possible?
  • 7.2. Aeromobil flying car - flying car from Slovakia in 2020?
  • 7.3. Airborne and the GyroDrive
  • 7.4. Toyota: fuel cells or flying cars?
  • 7.5. The race is on?
  • 7.6. Flying cars using airports
  • 7.7. Only single seat is viable?
  • 7.8. Combatting urban gridlock: better alternatives
  • 7.9. Hybrid VTOL flying car feasibility
  • 7.10. Elon Musk, Larry Page and Nikhil Goel

8. CAFE TENTH ELECTRIC AIRCRAFT SYMPOSIUM REPORT

Back to Top