Cover Image
市場調查報告書

有人電力飛機 (MEA) 市場:2016-2031年

Manned Electric Aircraft 2016-2031

出版商 IDTechEx Ltd. 商品編碼 357119
出版日期 內容資訊 英文 188 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
有人電力飛機 (MEA) 市場:2016-2031年 Manned Electric Aircraft 2016-2031
出版日期: 2016年12月01日 內容資訊: 英文 188 Slides
簡介

本報告提供有人電力飛機 (MEA) 市場長期性展望調查,提供MEA化的理由,MEA的課題與市場機會,構成MEA的主要技術概要及技術部門別趨勢,彙整獨立能源交通工具 (EIV) 的可能性,MEA銷售台數·價格的預測,主要經營者的配合措施範例等資料。

第1章 摘要整理·總論

  • 重要調查結果
  • 有人飛機的飛機電器化理由
  • 轉換到電力飛機的:MEA·混合·純電動
  • MEA的課題與市場機會
  • 電力飛機的方向性
  • 比電動車發展遲滯的有人飛機
  • 大型電力飛機趨勢
  • 飛機的電力化
  • 商業化的電力飛機
  • 新商業化的道
  • 純電動有人飛機
  • 混合電力飛機
  • 動力傳動的選項
  • 新的終局遊戲:獨立能源交通工具 (EIV)
  • 未來的主要實行技術範例
  • 機械的減少和電子的增加
  • 結合陸·海·空為一個商務:混合&純電動
  • 美國的小型電力飛機:法律規章障礙
  • 歐洲的野心
  • 在東亞的發展
    • 中國
    • 日本
  • 市場預測

第2章 簡介

  • 過去吸取的經驗
  • 目前情形
  • 其他範例:提供一個機體複數的動力傳動選擇
  • 第一個商用四人座混合動力車
  • 新的電池&燃料電池飛機

第3章 動力傳動的各種類型

  • 電子動力傳動是什麼?
  • 是純電動還是混合?
    • 案例:PC Aero Elektra One
    • 案例:E-Genius, SUGAR Volt
  • 混合電力飛機的各種類型
    • 並聯混合
    • 串聯式油電混合
  • 典型混合運轉週期及其案例
    • 工作週期
    • Cambridge University Song
    • Equator P2 Xcursion
    • 生質燃料太陽能混合
    • DARPA VTOL
  • Airbus的混合電力飛機:概要
  • 輕度 vs 斯特朗混合:汽車吸取的經驗
  • EV動力傳動及技術預測
  • 獨立能源型電動車 (EIV)
  • 主要EIV技術
  • 馬達和馬達生成器
  • Range extenders(增程器)

第4章 能源儲存

  • 選項
  • 電動車在能源儲存技術所扮演的角色
  • 強化鋰離子電池的安全
  • 各種系統的運行原理
  • 從超級電容器儲能到鋰離子電池
  • 未來的混合&純電動機和能源儲存選項的選配:其他產業的教訓
    • 未來的能源儲存選擇的製圖
  • 鋰離子電池與超級電容器儲能
  • 利用結構性電子的超輕量化

第5章 能源採集和能源的再生

  • 定義和背景
  • Faradair BEHA

第6章 獨立能源交通工具 (EIV)

  • 獨立能源型電動車
  • 傳統飛機的電力電子技術
  • 客機的地上電動車化
  • 迴轉電子機械和電力電子技術的改良之大潛力
  • 未來的設計:NASA的見解等

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

This report of over 135 slide format pages is replete with new forecasts, analysis and infographics seeing the future. The key parts of recent presentations by all the key players are embedded in this work, almost entirely researched in 2016 by award winning PhD level IDTechEx analysts travelling worldwide. Interviews, IDTechEx databases, web searches and conference attendance were extensively used. Old information is useless in this now fast moving field.

The structure of the report is a comprehensive Executive Summary and Conclusions then Introduction looking at lessons from the past then chapters on types of powertrain involved, motors and motor generators, energy storage, energy harvesting and regeneration, the end game of Energy Independent Electric Vehicles (EIV) and finally More Electric Aircraft (MEA) programs and how they are migrating to electric aircraft. Throughout there are many examples of electric aircraft from airships to helicopters and microlights, both for sale and planned. Specifications are given for many of these and key components for the future are discussed in depth. The tone is critical not evangelical.

The coverage in the report includes 2016-2026 forecasts of low and high priced electric aircraft sales by number, unit price and market value and a view of figures up to 2031 including assessments by several leading players. The subject matter includes looking at how electric aircraft have largely followed electric land and water vehicles. Pure electric small ones appeared first, about 50 years after the first electric boats and cars. Hybrid ones are needed for the longer distances and tougher duty cycles and only now are these getting serious investment. The report finds that the delays are only partly explained by the tougher demands and regulatory requirements of aircraft and how things are now changing with much larger commitments. In 2016, Siemens and Airbus agreed to pool 200 engineers to work on them, the level of effort Toyota allotted to hybrid cars twenty years earlier, with major commercial success resulting today. Toyota enjoys well over $20 billion dollars of sales of electric cars, buses and forklifts with Honda and BMW successful too - interesting because all three are now tackling aircraft. Indeed, Google and Facebook are involved in electric cars and aircraft and Apple is interested so it is wake up time. The report analyses the opportunities in new aircraft and their changing key components.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Unique approach of this report
  • 1.2. Some important findings
  • 1.3. Why go electric for manned aircraft?
  • 1.4. How to transition to electric aircraft: MEA, hybrid, pure electric
  • 1.5. MEA issues and opportunities
  • 1.6. Where electric aircraft are headed: range anxiety to range superiority
  • 1.7. Manned aircraft lagged land-based electric vehicles
    • 1.7.1. Great achievements
    • 1.7.2. Little business
    • 1.7.3. Hybrids should have been first
    • 1.7.4. Hybrids: running before you can walk
  • 1.8. Trend to larger electric aircraft
    • 1.8.1. Overview of major issues
    • 1.8.2. Viability of pure electric larger aircraft: timeline
  • 1.9. Electrification of aircraft in general: rapid progress
  • 1.10. Electric aircraft already commercialised
    • 1.10.1. Examples
    • 1.10.2. Viability of electric primary trainers already
  • 1.11. Routes to further commercialisation of electric aircraft
  • 1.12. Pure electric manned aircraft arriving
  • 1.13. Hybrid electric aircraft arriving
    • 1.13.1. HYPSTAIR powertrain for general aviation
    • 1.13.2. Hybrid electric helicopters, mullticopters
    • 1.13.3. Airbus eThrust concept with DEP
    • 1.13.4. NASA Sceptor concept with DEP
  • 1.14. Flying cars: needed or possible?
    • 1.14.1. Flying cars using airports
    • 1.14.2. Only single seat is viable?
    • 1.14.3. Combatting urban gridlock: better alternatives
    • 1.14.4. Hybrid VTOL flying car feasibility
  • 1.15. Choice of powertrains is influenced by many factors
  • 1.16. New end game: Energy Independent Vehicles EIV
  • 1.17. Key enabling technologies in future: examples
    • 1.17.1. Energy harvesting including regeneration
    • 1.17.2. Structural electronics tears up the rule book
    • 1.17.3. Power electronics and other key enablers
  • 1.18. Less mechanics: more electronics
  • 1.19. Becoming one business land, water, air - hybrid and pure electric
  • 1.20. Regulations have impeded small e-aircraft in the USA
  • 1.21. Ambition and freedom in Europe
  • 1.22. Progress in East Asia
    • 1.22.1. China
    • 1.22.2. Japan
  • 1.23. Market forecasts
    • 1.23.1. Timelines 2016-2031: IDTechEx, Airbus, Rolls Royce, others
    • 1.23.2. Rolls Royce timeline
    • 1.23.3. MEA target and roadmaps converge to EV for 2035
    • 1.23.4. Manned electric aircraft and airliner forecasts
    • 1.23.5. Manned electric aircraft market forecasts 2016-2026 including hybrid

2. INTRODUCTION

  • 2.1. Lessons from the past
  • 2.2. Situation today
  • 2.3. Other examples: trend to offering several powertrain options in one airframe
  • 2.4. First commercial four seat hybrid
  • 2.5. Contest in 2015: new battery and fuel cell planes
  • 2.6. DLR project for HY4 four-passenger fuel cell aircraft
  • 2.7. New Airbus autonomous aircraft November 2016
  • 2.8. Zero-emission air transport - first flight of four-seat passenger aircraft HY4 - September 2016
  • 2.9. The first electric and VTOL aircraft by Zee.Aero - October 2016

3. TYPES OF POWERTRAIN

  • 3.1. What is an electric powertrain?
  • 3.2. Pure electric or hybrid
    • 3.2.1. Example: PC Aero Elektra One
    • 3.2.2. Examples: E-Genius, SUGAR Volt
  • 3.3. Types of hybrid electric aircraft
    • 3.3.1. Parallel hybrid
    • 3.3.2. Series hybrid
  • 3.4. Typical hybrid duty cycle and examples
    • 3.4.1. Duty cycle
    • 3.4.2. Cambridge University Song hybrid
    • 3.4.3. Equator P2 Xcursion amphibious aircraft
    • 3.4.4. Biofuel solar hybrid
    • 3.4.5. DARPA VTOL
  • 3.5. Airbus overview of hybrid electric aircraft
  • 3.6. Mild vs strong hybrid: lessons from land vehicles
  • 3.7. EV powertrains and technology forecasts: 2000
  • 3.8. EV powertrains and technology forecasts: 2016
  • 3.9. EV powertrains and technology forecasts: 2017 onwards
  • 3.10. Energy independent electric vehicles EIV operational choices
  • 3.11. Key EIV technologies
  • 3.12. Motors and motor generators
    • 3.12.1. Trend to higher power to weight ratio
    • 3.12.2. Technologies in context of all EVs
    • 3.12.3. Electrical engine start for hybrid electric aircraft
    • 3.12.4. Integrated components - in-wheel
    • 3.12.5. Multimotor designs
    • 3.12.6. Superconducting propulsors and interconnects
  • 3.13. Range extenders
    • 3.13.1. Overview
    • 3.13.2. Gas turbines and rotary combustion engines
    • 3.13.3. Fuel cells

4. ENERGY STORAGE

  • 4.1. Options
  • 4.2. The role of energy storage technologies in electric vehicles
  • 4.3. Making lithium-ion batteries safer
  • 4.4. Operational Principles of Different Systems
  • 4.5. Supercapacitors to Li-ion batteries - a spectrum of functional tailoring
  • 4.6. Matching future hybrid and pure electric aircraft to energy storage choices. Learning from other industries
    • 4.6.1. Map of energy storage choices 2026-2036
  • 4.7. Supercapacitors across lithium-ion batteries
  • 4.8. Extreme lightweighting by structural electronics
    • 4.8.1. Earlier attempts at structural fuel; cells, batteries and capacitors
    • 4.8.2. Successful supercapacitor bodywork
    • 4.8.3. Many other types of structural electronics for aircraft

5. ENERGY HARVESTING AND REGENERATION

  • 5.1. Definitions and background
  • 5.2. Faradair BEHA

6. ENERGY INDEPENDENT VEHICLES EIV

  • 6.1. Energy independent electric vehicles
    • 6.1.1. Why we want more than mechanical energy independence
    • 6.1.2. The EIV powertrain
    • 6.1.3. EIV operational choices
    • 6.1.4. Turtle airship USA
    • 6.1.5. Solar Impulse Switzerland
    • 6.1.6. Solar Ship inflatable fixed wing aircraft Canada
    • 6.1.7. Sunstar USA
    • 6.1.8. Sunseeker Duo USA
    • 6.1.9. The More Electric Aircraft MEA
  • 6.2. Not there yet for large hybrids
  • 6.3. Power electronics in conventional aircraft
  • 6.4. Airliner becomes an electric vehicle when on the ground
  • 6.5. Great potential to improve rotating electrical machines and power electronics
  • 6.6. Future design space: NASA view

7. CAFE TENTH ELECTRIC AIRCRAFT SYMPOSIUM REPORT 2016

Back to Top