Cover Image
市場調查報告書

鈣鈦礦太陽能電池 2015-2025年:技術·市場·企業

Perovskite Photovoltaics 2016-2026: Technologies, Markets, Players

出版商 IDTechEx Ltd. 商品編碼 346109
出版日期 內容資訊 英文 113 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
鈣鈦礦太陽能電池 2015-2025年:技術·市場·企業 Perovskite Photovoltaics 2016-2026: Technologies, Markets, Players
出版日期: 2016年09月23日 內容資訊: 英文 113 Slides
簡介

2013年科學領域的10大進步之一,就數鈣鈦礦太陽能電池,其效率的急速改善 (從2006年的2.2%到2014年的20.1%)與低廉的材料、製造成本,展現出今後莫大的可能性。鈣鈦礦太陽能電池比起DSSC及OPV的領域具有更大潛力而受到世人注目,許多企業及井究機關更將其焦點由DSSC·OPV轉向鈣鈦礦。

本報告提供鈣鈦礦太陽能電池的技術及市場相關調查,提供您各太陽能光電發電 (PV) 技術的發展過程,技術概要,架構和生產法,各種材料,鈣鈦礦太陽能電池以及與其他各種PV技術的比較,鈣鈦礦太陽能電池的發電成本,用途·終端用戶產業分析,市場成長預測,並彙整主要企業的簡介等資訊。

第1章 概要

第2章 各PV技術的技術基準

  • 太陽能光電發電技術的分類:世代別
  • 太陽能光電發電技術的分類:各材料
  • 矽太陽能技術
  • 太陽能電池的Golden triangle
  • 技術開發藍圖
  • 各太陽能技術的效率:電池·模組
  • PV的生命週期及能源資本回收期間
  • 技術開發藍圖
  • 各PV技術的價格
  • 各PV技術的太陽設備結構
  • 開路電壓 vs. 光學能隙
  • 最大光能源利用
  • 各PV技術的標準比較
  • 矽晶型
  • 砷化鎵
  • 氫化非晶硅
  • 碲化鎘
  • CIGS (銅,銦,鎵,硒化合物)
  • 銅·鋅·錫硫化物
  • 有機太陽能光電發電
  • 量子點太陽能光電發電
  • 染料敏化太陽能電池
  • 鈣鈦礦

第3章 成本分析

  • 全球PV產業成長
  • 發電的成本
  • 基於學習曲線的PV模組預測
  • 主要國家上的一般PV系統價格
  • 鈣鈦礦PV的整體產能成本
  • 鈣鈦礦模組成本的估計
  • 未來的鈣鈦礦PV系統成本分析
  • 使用了鈣鈦礦堆疊的未來P型矽tandem system分析

第4章 商業機會·市場預測

  • 商業機會的摘要
  • 鈣鈦礦太陽能光電發電的應用藍圖
  • 智慧玻璃
  • 太陽能建築一體化
  • 公共事業市場
  • 室外用家具
  • 汽車
  • 第3全球應用
  • 可攜式電子產品
  • 前提條件 & 分析
  • 市場預測
  • 考慮了模組價值全體的市場預測
  • 市場區隔:以金額為準

第5章 鈣鈦礦太陽能電池的背景

  • 太陽的頻譜
  • 效率的計算
  • 鈣鈦礦是什麼?
  • 鈣鈦礦結構
  • 鈣鈦礦太陽能電池的賣點
  • 價值命題
  • 運行原理
  • 障礙 & 課題
  • 鈣鈦礦太陽能電池的穩定性
  • 鹵素混合鈣鈦礦更加穩定
  • 電流電壓曲線的滯後現象
  • 一前一後排列太陽能電池
  • 效率 vs. 供電
  • DSSC的PCE的進步
  • 鈣鈦礦太陽能電池的演進1
  • 鈣鈦礦太陽能電池的演進2

第6章 架構及製造

  • 鈣鈦礦太陽能電池的分類
  • 鈣鈦礦太陽能電池結構/架構
  • 矽·矽晶圓的製造
  • 鈣鈦礦薄膜的層積
  • 層積流程的工程
  • Processing Planar Heterojunction without TiO2
  • 鈣鈦礦薄膜的層積法
  • 一步法前驅體層積
  • 連續層積法
  • 二步法旋轉塗料層積
  • 噴霧塗料層積
  • 槽模塗佈
  • 2元真空蒸發
  • 連續沉澱
  • 蒸氣支援解決方案法

第7章 材料的選擇

  • 材料的組合
  • 鈣鈦礦的有機離子
  • 鈣鈦礦的鹵素離子
  • 能隙的調整
  • 預定材料的改良
  • 介面層
  • 聚合物HTM
  • 苯胺衍生物型小分子HTMS
  • 小分子HTMS無苯胺衍生物

第8章 企業簡介

  • Crystalsol (CZTS)
  • CSIRO
  • Dyesol
  • Fraunhofer ISE
  • FrontMaterials
  • G24 Power
  • Oxford Photovoltaics
  • Saule Technologies
  • Technical Research Centre of Finland (VTT)
  • Weihua Solar

第9章 簡稱

第10章 主要的鈣鈦礦PV市場參與企業

  • CSIRO
  • Dyesol
  • Fraunhofer ISE
  • FrontMaterials
  • Oxford Photovoltaics
  • Saule Technologies
  • Xiamen Weihua Solar Co.,Ltd.

第11章 其他新興PV市場參與企業

  • Alta Devices
  • Armor
  • Belectric
  • CrayoNano AS
  • Crystalsol GmbH
  • DisaSolar
  • Eight19 Ltd
  • Exeger
  • Flexink
  • G24 Power Ltd
  • Heliatek GmbH
  • NanoGram Corp
  • National Research Council Canada
  • New Energy Technologies Inc
  • Polyera Corporation
  • Raynergy Tek Incorporation
  • Solaronix
  • SolarPrint Ltd
  • 住友化學·CDT
  • Ubiquitous Energy Inc
  • VTT Technical Research Centre of Finland

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

By 2026 the market is expected to reach over $200 million.

As one of the top ten science breakthroughs of 2013, perovskite solar cells have shown potential both in the rapid efficiency improvement (from 2.2% in 2006 to the latest record 20.1% in 2014) and in cheap material and manufacturing costs. Perovskite solar cells have attracted tremendous attention from the likes of DSSC and OPVs with greater potential. Many companies and research institutes that focused on DSSCs and OPVs now transfer attention to perovskites with few research institutes remaining exclusively committed to OPVs and DSSCs.

Perovskite solar cells are a breath of fresh air into the emerging photovoltaic technology landscape. They have amazed with an incredibly fast efficiency improvement, going from just 2% in 2006 to over 20.1% in 2015.

Photovoltaic (PV) technologies are basically divided into two big categories: wafer-based PV (also called 1st generation PV) and thin-film cell PV.

Traditional crystalline silicon (c-Si) cells (both single crystalline silicon and multi-crystalline silicon) and gallium arsenide (GaAs) cells belong to the wafer-based PVs. Among different single-junction solar technologies, GaAs exhibits the highest efficiency, followed by c-Si cells. The latter dominates the current PV market (about 90% market share).

Thin-film cells normally absorb light 10-100 times more efficiently than silicon, allowing the use of films of just a few microns thick. Cadmium telluride (CdTe) technology has been successfully commercialized, with more than 20% cell efficiency and 17.5% module efficiency record. CdTe cells currently take about 5% of the total market. Other commercial thin-film technologies include hydrogenated amorphous silicon (a-Si:H) and copper indium gallium (di)selenide (CIGS) cells, taking approximately 2% market share each today. Copper zinc tin sulphide technology has been developed for years and it will still require some time for real commercialization.

The emerging thin-film PVs are also called 3rd generation PVs, which refer to PVs using technologies that have the potential to overcome Shockley-Queisser limit or are based on novel semiconductors. The 3rd generation PVs include DSSC, organic photovoltaic (OPV), quantum dot (QD) PV and perovskite PV. The cell efficiencies of perovskite are approaching that of commercialized 2nd generation technologies such as CdTe and CIGS. Other emerging PV technologies are still struggling with lab cell efficiencies lower than 15%.

High and rapidly improved efficiencies, as well as low potential material & processing costs are not the only advantages of perovskite solar cells. Flexibility, semi-transparency, tailored form factors, thin-film, light-weight are other value propositions of perovskite solar cells.

With so many improvements, perovskite solar cell technology is still in the early stages of commercialization compared with other mature solar technologies as there are a number of concerns remaining such as stability, toxicity of lead in the most popular perovskite materials, scaling-up, etc. Crystalline silicon PV modules have fallen from $76.67/W in 1977 to $0.4-0.5/W with fair efficiency in early 2015.

  • Will perovskite solar cells be able to compete with silicon solar cells which dominate the PV market now?
  • What is the status of the technology?
  • What are the potential markets?
  • Who is working on it?

Those questions will be answered in this report.

The report will also benchmark other photovoltaic technologies including crystalline silicon, GaAs, amorphous silicon, CdTe, CIGS, CZTS, DSSC, OPV and quantum dot PV. Cost analysis is provided for future perovskite solar cells. A 10-year market forecast is given based on different application segments. Possible fabrication methods and material choices are discussed as well.

The market forecast is provided based on the following applications:

  • Smart glass
  • BIPV
  • Outdoor furniture
  • Perovskites in tandem solar cells
  • Utility
  • Portable devices
  • Third world/developing countries for off-grid applications
  • Automotive
  • Others

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. OVERVIEW

  • 1.1. Overview of Research-Cell Efficiencies of Different Solar Technologies
  • 1.2. New Breakthrough in Solar Technology
  • 1.3. Perovskite Solar Cell Development Timeline

2. TECHNOLOGY BENCHMARKING OF DIFFERENT PV TECHNOLOGIES

  • 2.1. Photovoltaic Technology Classification by Generation
  • 2.2. Photovoltaic Technology Classification by Material
  • 2.3. Silicon Solar Technologies
  • 2.4. Golden Triangle of Solar Cells
  • 2.5. Technology Development Roadmap
  • 2.6. Efficiencies of Different Solar Technologies: Cells and Modules
  • 2.7. Life Cycle of PV and Energy Payback Times
  • 2.8. Price of Different PV Technologies
  • 2.9. Solar Device Structures of Different PV Technologies
  • 2.10. Open-Circuit Voltage Versus Optical Bandgap
  • 2.11. Maximum Photo Energy Utilisation
  • 2.12. Metrics Comparison of Different PV Technologies
  • 2.13. Crystalline Silicon
  • 2.14. Gallium Arsenide
  • 2.15. Hydrogenated Amorphous Silicon
  • 2.16. Cadmium Telluride
  • 2.17. Copper Indium Gallium (Di)selenide
  • 2.18. Copper Zinc Tin Sulphide
  • 2.19. Organic Photovoltaic
  • 2.20. Quantum Dot Photovoltaic
  • 2.21. Dye-Sensitized Solar Cell
  • 2.22. Perovskite

3. COST ANALYSIS

  • 3.1. Global PV Industry Growth 1993 - 2014
  • 3.2. Cost of Generating Electricity
  • 3.3. PV Module Prediction based on Learning Curve
  • 3.4. Typical PV System Prices in Selected Countries
  • 3.5. Total Energy Generation Cost of Perovskite PVs
  • 3.6. Perovskite Module Cost Estimation
  • 3.7. Future Perovskite PV System Cost Breakdown
  • 3.8. Future Perovskite PV System Cost Breakdown assumption
  • 3.9. Breakdown of Future P-type Silicon Tandem System with Perovskite Stack

4. COMMERCIAL OPPORTUNITIES AND MARKET FORECAST

  • 4.1. Summary of Commercial Opportunity
  • 4.2. Application Roadmap of Perovskite Photovoltaics
  • 4.3. Smart Glass
  • 4.4. Building Integrated Photovoltaics
  • 4.5. Utility Market
  • 4.6. Outdoor Furniture
  • 4.7. Automotive
  • 4.8. Third World Application
  • 4.9. Portable Electronics
  • 4.10. Assumptions & Analysis
  • 4.11. Market Forecast in US$ Million
  • 4.12. Market Forecast Considering the Whole Module Value
  • 4.13. Market Segment by Value in 2026

5. BACKGROUND OF PEROVSKITE SOLAR CELLS

  • 5.1. Solar Spectrum
  • 5.2. Calculating Efficiency
  • 5.3. What Is Perovskite?
  • 5.4. Perovskite Structure
  • 5.5. Perovskite Solar Cells-Selling Points
  • 5.6. Value Propositions
  • 5.7. Working Principle
  • 5.8. Barriers & Challenges
  • 5.9. Stability of Perovskite Solar Cells
  • 5.10. Mixture Halide Perovskite Is More Stable
  • 5.11. Hysteresis Behaviour in the Current-Voltage Curves
  • 5.12. Tandem Solar Cell: Perovskite Stack Can Be Printed on top of Existing Silicon PV Cells
  • 5.13. Efficiency versus Transmission
  • 5.14. Progress in PCEs of DSSC
  • 5.15. Perovskite Solar Cell Evolution 1
  • 5.16. Perovskite Solar Cell Evolution 2

6. ARCHITECTURE AND FABRICATION

  • 6.1. Classification of Perovskite Solar Cells
  • 6.2. Structures/Architectures of Perovskite Solar Cells
  • 6.3. Production of silicon and silicon wafers
  • 6.4. Deposition of Perovskite Films
  • 6.5. Engineering the Deposition Process
  • 6.6. Processing Planar Heterojunction without TiO2
  • 6.7. Deposition Processes for Perovskite Films
  • 6.8. One Step Precursor Deposition
  • 6.9. Sequential Deposition Process
  • 6.10. Two Step Spin-Coating Deposition
  • 6.11. Spray Coating Deposition
  • 6.12. Slot-Die Coating Process
  • 6.13. Dual Source Vacuum Deposition
  • 6.14. Sequential Vapour Deposition
  • 6.15. Vapour-Assisted Solution Process

7. MATERIAL OPTIONS

  • 7.1. Material Combinations
  • 7.2. Organic Ions in Perovskite
  • 7.3. Halogen Ions in Perovskite
  • 7.4. Bandgap Tuning
  • 7.5. Possible Material Improvement
  • 7.6. Interface Layers
  • 7.7. Polymer HTMs
  • 7.8. Small Molecule HTMs Based on Phenylamine Derivatives
  • 7.9. Small Molecule HTMs without Phenylamine Derivatives

8. PLAYER PROFILES

  • 8.1. Printed photovoltaic thin-film module of Crystalsol
  • 8.2. Roadmap of Perovskite Photovoltaics in Oxford PV
  • 8.3. Partners of Saule Technologies
  • 8.4. 450 mm x 650 mm Prototype from Weihua Solar

9. COMPANIES CURRENTLY WORKING ON PEROVSKITES

  • 9.1. CSIRO
  • 9.2. Dyesol
  • 9.3. Fraunhofer ISE
  • 9.4. FrontMaterials
  • 9.5. Oxford Photovoltaics
  • 9.6. Saule Technologies
  • 9.7. Xiamen Weihua Solar Co.,Ltd.

10. COMPANIES WORKING ON OTHER EMERGING PVS

  • 10.1. Alta Devices
  • 10.2. Armor
  • 10.3. Belectric
  • 10.4. CrayoNano AS
  • 10.5. Crystalsol GmbH
  • 10.6. DisaSolar
  • 10.7. Eight19 Ltd
  • 10.8. Exeger
  • 10.9. Flexink
  • 10.10. G24 Power Ltd
  • 10.11. Heliatek GmbH
  • 10.12. NanoGram Corp
  • 10.13. National Research Council Canada
  • 10.14. New Energy Technologies Inc
  • 10.15. Polyera Corporation
  • 10.16. Raynergy Tek Incorporation
  • 10.17. Solaronix
  • 10.18. SolarPrint Ltd
  • 10.19. Sumitomo Chemical and CDT
  • 10.20. Ubiquitous Energy Inc
  • 10.21. VTT Technical Research Centre of Finland

11. ABBREVIATIONS

Back to Top