Cover Image
市場調查報告書

能源自動式電動車輛:2016年∼2036年

Energy Independent Electric Vehicle Technology Roadmap 2016-2036

出版商 IDTechEx Ltd. 商品編碼 344979
出版日期 內容資訊 英文 185 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
能源自動式電動車輛:2016年∼2036年 Energy Independent Electric Vehicle Technology Roadmap 2016-2036
出版日期: 2016年04月01日 內容資訊: 英文 185 Slides
簡介

所說的關於一般認為本報告提供陸上、水上及空中用EIV (能源自動式車輛) 的、現有、未來的主要賦能技術的相關調查、EIV及領導EIV的計劃簡介、新類型的太陽能光電發電&電池的商機、能源採集的未來趨勢、未來的動力傳動效率檢討、陸上/水上/水中/空中等各分類的前導性車輛等相關資料彙整。

第1章 摘要整理、結論

第2章 簡介

第3章 對EIV (能源自動式車輛) 來說新的格式非常重要

  • 膠體量子點噴在太陽能?
  • 可是現在大部分仍為矽
  • 機械性及電力性的能源自動式車輛之間的重複
  • 以車輛利用為目的之e-光纖計劃範例
  • 歐洲的 Powerweave 計劃:飛艇、帆船、其他

第4章 EIV 中的能源採集系統

  • EH系統
  • Qualcomm的觀點
  • 自動操作 + EIKV
  • 動態無線充電
  • 來自韓國:道路的動態充電、其他

第5章 非常高的動力傳動效率

第6章 超輕量

  • 超輕量
  • 輕量材料
  • 飛機翼的一部分的防止結冰電熱器
  • 鋁、塑膠的利用使微車輛重量減半
  • 承重性、及智慧介面電動產品/電子產品
  • 結構性電子的終局

第7章 下一代的儲能

  • 下一代的儲能
  • 儲能技術比較
  • 下一代電池:摘要
  • 為何現在要後鋰離子電池?
  • 鋰離子性能用新材料也漲到極限、其他

第8章 EIV及陸上用車輛的先驅:公路式

第9章 太陽能參加比賽者

第10章 EIV及陸上用車輛的先驅:非公路式

第11章 EIV及水上航海用車輛的先驅

第12章 EIV及水中航海用車輛的先驅

第13章 EIV及內陸水路用車輛的先驅

第14章 EIV及空中空氣注射式的先驅

關於IDTECHEX

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Only up-to-date report on the full picture focussing on technology and commercial prospects.

This unique report explains the existing and future key enabling technologies of land, water and airborne EIVs, notably harvesting of ambient energy, extreme lightweighting, future streamlining and powertrain efficiency. 45 EIVs and projects intended to lead to EIVs are profiled, identifying business opportunities such as the new types of photovoltaics and batteries coming in and where this is taking place. It is demonstrated that interest and achievement is fairly evenly split between land, water and air vehicles and the extremely broad variety of missions performed is identified. Which countries are in the lead and what comes next across the world is revealed.

Presented as slide format packed with new analysis and infographics, it has a profusion of pictures, new comparison tables and the roadmap of technology improvement. This is understood in the context of precursors of EIVs. These include electric vehicles using photovoltaics for significant range enhancement and mechanically harvesting vehicles such as sailing boats, balloons and gliders.

Future trends in energy harvesting are clarified - such e-fibres to produce traction electricity from rain, wind or sun, and the new conformal, ultra-thin photovoltaics. There is also appraisal of new types of energy storage, including supercapacitors and lithium-ion capacitors and the scope for making them into load-bearing structures. For sailing boats, the rapid progress in using propellers that go backwards to generate electricity is evaluated.

Consideration of lightweighting even extends to structural electronics where the body of the vehicle is the electrics and electronics releasing space and weight and increasing reliability and life. Lightweighting also includes ships harvesting oncoming waves to rise in the water reducing drag: there is much more to this subject than first meets the eye and it is relevant to all vehicles not just the end game of total energy independence.

Consideration of future powertrain efficiency includes the effect of multi-mode regenerative harvesting in the vehicles and the place of streamlining. EIVs being autonomous is considered as a major synergy of technologies.

The system aspects are also considered plus the connected and dynamically charged vehicle as transitional products to EIVs.

Extensive global travel and interviews by expert multi-lingual analysts in 2015 are the basis of the research, together with primary investigations and analysis from unique IDTechEx technology and market databases.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Types of EIV and related vehicles
  • 1.2. EIV operational choices
  • 1.3. Key EIV technologies
  • 1.4. Technologies of EIVs past, present and concept including vehicles likely to be further developed into being EIVs
  • 1.5. EIV Technology roadmap 2016-2026

2. INTRODUCTION

  • 2.1. Energy Independent Vehicles: energy, definition and function
  • 2.2. Definition and primary features
  • 2.3. What is energy harvesting?
  • 2.4. Characteristics of the High Power Energy Harvesting essential to EIVs
  • 2.5. Hype curves
  • 2.6. Hype curve for EH technology 2016
  • 2.7. Hype curve for EH technology 2026
  • 2.8. Good features and challenges of the four most important EH technologies
  • 2.9. High power energy harvesting
  • 2.10. Efficiency achieved and theoretical potential for improving efficiency
  • 2.11. Energy harvesting technologies with examples of good features in blue
  • 2.12. More EH in a vehicle
  • 2.13. Intermittent power generated
  • 2.14. Comparison of pn junction and photoelectrochemical PV
  • 2.15. Priorities for high power EH in EIVs, for primary traction power, with examples
  • 2.16. Main PV options beyond silicon
  • 2.17. Chasing affordable, ultra-lightweight conformal PV for EIVs
  • 2.18. Thin, lightweight Fresnel lens concentrator
  • 2.19. PV cost and efficiency trends

3. NEW FORMATS ARE VERY IMPORTANT FOR EIVS

  • 3.1. New formats are very important for EIVs
  • 3.2. Colloidal Quantum Dot spray on solar?
  • 3.3. But mostly still silicon today
  • 3.4. Overlap between mechanically and electrically energy independent vehicles
  • 3.5. Examples of e-fiber projects aimed at use in vehicles
  • 3.6. European Powerweave project: airships & sails
  • 3.7. Hybrid piezo photovoltaic material
  • 3.8. Triboelectricity is being developed for car tires in 2015
  • 3.9. EIVs - more than adding something to a vehicle
  • 3.10. EH system
  • 3.11. Autonomous operation + EIV: a synergistic ecosystem
  • 3.12. Korea - dynamic charging from road
  • 3.13. Dynamic charging will use very low cost electricity

4. ENERGY HARVESTING AS SYSTEMS IN EIVS

  • 4.1. EH system
  • 4.2. Qualcomm vision
  • 4.3. Autonomous operation + EIKV
  • 4.4. Dynamic wireless charging
  • 4.5. Korea - dynamic charging from road
  • 4.6. Dynamic charging will use very low cost electricity
  • 4.7. Energy harvesting as systems in EIVs
  • 4.8. EH system
  • 4.9. Internal vehicle efficiency improvement by EH - progress towards EIVs

5. EXTREME POWERTRAIN EFFICIENCY

  • 5.1. Extreme powertrain efficiency

6. EXTREME LIGHTWEIGHTING

  • 6.1. Extreme lightweighting
  • 6.2. Lightweighting materials
  • 6.3. De-icing heater as part of an aircraft wing
  • 6.4. Use of aluminium and plastics to halve microcar weight
  • 6.5. Load-bearing and smart skin electrics/electronics
  • 6.6. Structural electronics (referring to electrics and electronics) is the end game for most EIV components
  • 6.7. Lightweighting of electronic components
  • 6.8. Tesla S chassis largely made of aluminium

7. NEXT GENERATION ENERGY STORAGE

  • 7.1. Next generation energy storage
  • 7.2. Energy storage technologies in comparison
  • 7.3. Next generation batteries: summary
  • 7.4. Why post lithium-ion batteries now?
  • 7.5. Li-ion performance will plateau even with new materials
  • 7.6. US DoE projections of traction battery cost
  • 7.7. What are post Li-ion battery technology candidates?
  • 7.8. Challenges for Post Lithium-ion Batteries
  • 7.9. Mainstream market requirements: Performance and price
  • 7.10. Automotive Lithium Battery Price evolution at pack level
  • 7.11. Battery price trends per sector
  • 7.12. Technology maturity roadmap per market segment
  • 7.13. Technologies of Post Lithium-ion Batteries
  • 7.14. Benchmarking of theoretical battery performance
  • 7.15. Benchmarking of practical battery performance 2015
  • 7.16. Why Silicon anode batteries?
  • 7.17. Silicon anode
  • 7.18. Motivation - why Lithium Sulfur batteries?
  • 7.19. Challenges Lithium Sulfur battery
  • 7.20. Why solid state Li-ion or other batteries?
  • 7.21. Solid state batteries?
  • 7.22. Lithium capacitor
  • 7.23. Supercapacitors
  • 7.24. Supercapacitors and hybrid supercapacitor
  • 7.25. Nomenclature
  • 7.26. Lithium capacitors technology performance of products available today
  • 7.27. Sodium ion batteries
  • 7.28. Summary of technology challenges for future traction batteries
  • 7.29. EIV technology spawns advances for all vehicles
  • 7.30. Energy Independent Vehicles EIV and precursors in action

8. EIVS AND PRECURSORS ON LAND, ON-ROAD

  • 8.1. Stella Lux passenger car Netherlands
  • 8.2. Sunswift eVe passenger car Australia
  • 8.3. Immortus passenger car Australia
  • 8.4. POLYMODEL micro EV Italy
  • 8.5. Venturi Eclectic passenger car Italy
  • 8.6. Dalian tourist bus China
  • 8.7. NFH-H microbus China
  • 8.8. Kayoola large bus Uganda
  • 8.9. Cargo Trike micro EV UK
  • 8.10. Sunnyclist Greece
  • 8.11. Funding for development of lightweight solar modules on vehicles

9. SOLAR RACERS

  • 9.1. World Solar Challenge
  • 9.2. Other solar races
  • 9.3. Solar racer technologies - non solar parts
  • 9.4. Improvement of solar racer performance parameters
  • 9.5. Solar racer technologies - photovoltaics
  • 9.6. Power of One solar racer car Canada
  • 9.7. Bethany solar racer UK
  • 9.8. CUER Resolution solar racer UK
  • 9.9. EVA solar racer UK
  • 9.10. Nuna 7 solar racer Netherlands
  • 9.11. Nuna 8 solar racer Netherlands
  • 9.12. Drifter 2.0 solar racer USA

10. EIVS AND PRECURSORS ON LAND, OFF-ROAD

  • 10.1. Vinerobot micro EV Europe

11. EIVS AND PRECURSORS ON WATER SEAGOING

  • 11.1. REPSAIL boat Poland, Turkey etc
  • 11.2. MARS boat UK
  • 11.3. RENSEA boat Iceland, Norway, Sweden
  • 11.4. Turanor boat Germany
  • 11.5. Vaka Moana boat Netherlands
  • 11.6. Sun21 boat Switzerland
  • 11.7. Seaswarm boat USA
  • 11.8. SOELCAT boat Netherlands
  • 11.9. Inerjy EcoVert

12. EIVS AND PRECURSORS SEAGOING UNDERWATER

  • 12.1. Seaglider AUV boat USA
  • 12.2. Cyro AUV jellyfish USA

13. EIVS AND PRECURSORS INLAND WATER

  • 13.1. Solar racing boats Netherlands
  • 13.2. Loon boat Canada
  • 13.3. EIV or similar - boat Alster Sun Netherlands

14. EIVS AND PRECURSORS AIRBORNE INFLATABLE

  • 14.1. Nephelios airship France
  • 14.2. Northrop Grumman airship USA
  • 14.3. Mitre DARPA airship USA
  • 14.4. HALE-D airship USA
  • 14.5. Dirisolar airship France
  • 14.6. Turtle airship USA
  • 14.7. Solar Ship inflatable fixed wing aircraft Canada
  • 14.8. Atlantik Solar 2 UAV Switzerland
  • 14.9. Zephyr 7 UAV UK, Germany
  • 14.10. Titan Aerospace UAV USA
  • 14.11. Solar Eagle UAV USA
  • 14.12. FCL UAV USA, UK
  • 14.13. Silent Falcon UAV USA
  • 14.14. Helios UAV USA
  • 14.15. Sunstar USA
  • 14.16. Sunseeker Duo USA
  • 14.17. Solar Impulse Switzerland

15. EIV TECHNOLOGY SPAWNS ADVANCES FOR ALL VEHICLES

  • 15.1. Energy independent vehicles: here come the benefits
Back to Top