Cover Image
市場調查報告書

獨立能源交通工具(EIV) 的全球市場:2016-2026年

Energy Independent Vehicles 2016-2026

出版商 IDTechEx Ltd. 商品編碼 339418
出版日期 內容資訊 英文 168 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
獨立能源交通工具(EIV) 的全球市場:2016-2026年 Energy Independent Vehicles 2016-2026
出版日期: 2015年09月10日 內容資訊: 英文 168 Pages
簡介

獨立能源交通工具(EIV) ,接受充分的太陽光能,不需要插入插頭或是補給燃料。已經有這類遊覽車、船艇,或高爾夫球車輛了。今後,可利用從太陽光得到的電能的船舶及飛機將日益增加。如果那些技術進一步發展,將成為在偏遠地區及第三世界中重要之物。還有以監視、檢驗為目的,也開發出獨立能源的飛艇,固定翼機及水中船等。全球獨立能源交通工具(EIV) 市場,預計2026年達到5,000億美元的規模,此後也將踏實擴大。

本報告以全球獨立能源交通工具(EIV) 市場為主題,提供高功率能源採集相關趨勢與能源採集諸技術,彙整市場概要、預測、趨勢、介紹市場預測,主要的陸海空的獨立能源交通工具(EIV) 。

第1章 摘要整理、整體概述

  • EV (電動車) 的結束:高功率能源採集
  • EAV (獨立能源車輛) 的種類
  • 速度或及其他的功能的追求
  • 技術
    • 多模式能源採集
  • 市場潛在力

第2章 簡介

  • 能源採集中央的舞台
  • 離網的能源採集從微瓦兆瓦單位
  • 大的架構的高功率能源採集
  • 獨立能源汽車的演變
  • 完全的獨立能源汽車

第3章 高功率能源採集 (HPEH) 技術,市場、未來

  • HPEH技術
  • 技術比較
    • parametric
    • 系統設計:轉換器、輸出調整、能源儲存
  • 成熟技術
    • 風力發電機,旋轉式葉片
    • 傳統太陽發電
    • 再生制動
  • 離網波收集
  • 對應狀況的HPEH:朝向再生能源27%的IRENA發展藍圖
  • 電動車的結束:免費的中途不停公路旅行
  • 定義與特徵
  • 市場概要
  • 市場成熟度,各用途
  • 能源採集應用的雙曲線
  • EH (能源採集) 系統
  • 多重能源採集
  • 市場預測
  • 技術計劃
  • 詳細技術領域的預測
    • 電動力學
    • 太陽能光電發電
    • 熱電
    • 地區差異
  • 太陽能光電發電
  • Powerweave的收集與貯存e-fiber/e-textile

第4章 地上的獨立能源汽車

  • Dalian旅遊車輛 (中國)
  • IFEVS microcar (義大利)
  • Immortus車輛 (澳洲)
  • NFH-H麵包車 (中國)
  • 全世界的太陽能比賽用汽車
  • Venturi電動車 (法國)
  • ineRobot (歐洲)

第5章 獨立能源船艇、船舶

  • Loon平底船 (加拿大)
  • MARS Shuttleworth馬達帆船 (英國)
  • Milper Propeller Technologies馬達帆船 (土耳其)
  • Rensea MARINA馬達帆船 (歐洲)
  • Seaswarm油薄膜收集機器人 (美國)
  • SoelCat汽艇 (荷蘭)
  • SolarLab旅遊船艇 (德國)
  • Sun 21太陽能船艇
  • Turanor Planet Solar (德國)
  • Vaka Moana馬達帆船 (荷蘭)
  • Case Western Reserve University鈣鈦礦太陽能光電發電
  • 趨勢、太陽能光電發電郗滑翔機
    • Virginia Institute of Marine Science (美國)
    • Falmouth Scientific Inc. (美國)
    • Liquid Robotics (美國)
    • US Naval Undersea Warfare Center

第6章 獨立能源飛機

  • Dirisolar飛艇 (法國)
  • ETHZ UAV (瑞士)
  • ISIS飛艇 (美國)
  • Lockheed Martin飛艇 (美國)
  • NASA Helois (美國)
  • Northrop Grumman飛艇 (美國)
  • Projet Sol'r Nepheleos (法國)
  • Solar Flight (美國)
  • Solar Impulse (瑞士)
  • Solar Ship空氣注射式飛機 (加拿大)
  • Sunrise Solar飛艇 (土耳其)
  • Turtle Airships (西班牙)

第7章 採訪、簡報

  • CargoTrike (英國)

IDTECHEX的調查報告、諮詢

圖表

目錄

Energy-autonomous, self-sufficient, electric land vehicles, boats, ships and aircraft propelled entirely by on-board conversion of wind, sun, waves, other ambient energy.

Only up to date report on the full picture focussing on technology and commercial prospects.

You can already buy a tourist bus or boat or golf car that never plugs in or refuels because it captures enough sunshine. Buy an autonomous underwater vehicle that surfaces to recharge its batteries with sunshine and sometimes wave power. See ships and planes circumnavigating the world electrically on sunshine alone. Buy an electric plane with a propeller that goes backwards when it rides thermals to charge the battery. Buy a boat that has a thrust propeller that does the same when under sail or moored in a tidestream.

Electric energy independent vehicles (EIVs) are going to be of immense importance even in remote communities and the third world as they become much more capable. Energy independent airships, fixed wing planes and underwater vessels are being designed for surveillance and inspection.

A multi-billion dollar industry is awaiting those involved in boats, ships, aircraft, land vehicles and energy harvesting. The electric vehicle business is forecasted by IDTechEx to be around $500 billion in 2026, rising strongly thereafter.

In this 164 page report, with 119 figures and tables, the electric vehicle market addressable by energy independence technology is forecasted in 45 categories. And EIVs, often the end game, will be an increasingly significant part of it. 33 energy independent vehicle projects by land, on-water, underwater and in the air are analysed after a thorough grounding in the technologies. How those technologies will progress is given particular attention - from multi-mode harvesting to structural electronics where the structure doubles as supercapacitor, battery and so on. Achievements and potential are presented in easily understood form. The basis is almost entirely research in 2015 from intensive global travel, interviews and analysis by PhD level experts. Latest conference material and presentations from across the world are shown.

Speed range of EIVs in this report.
Actual operating vehicles in green, planned in red.

                        Source IDTechEx

Land and water vehicles are pushing for higher speeds but the aircraft have got there and are now seeking other things, sometimes at slower speed. The other things include carrying more people and cargo and going further. The arrows show the trend in speed of next generation vs today's EIVs.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. End game with EVs: high power energy harvesting
  • 1.2. Types of EAV
  • 1.3. Chasing speed or other capability
  • 1.4. Technologies
    • 1.4.1. Multi-mode Energy Harvesting
  • 1.5. Market potential

2. INTRODUCTION

  • 2.1. Energy harvesting comes center stage
  • 2.2. Energy Harvesting Microwatts to Megawatts Off-Grid.
  • 2.3. High power energy harvesting in the big picture
  • 2.4. Progression to energy independent vehicles
    • 2.4.1. SolarWorld e-One Germany
    • 2.4.2. Solar Flight Sunseeker Duo USA
  • 2.5. Fully energy -independent vehicles

3. HIGH POWER ENERGY HARVESTING TECHNOLOGY, MARKET AND FUTURE

  • 3.1. HPEH Technology
  • 3.2. Technologies compared
    • 3.2.1. Parametric
    • 3.2.2. System design: transducer, power conditioning, energy storage
  • 3.3. Mature technologies
    • 3.3.1. Wind turbines, rotary blade
    • 3.3.2. Conventional photovoltaics
    • 3.3.3. Regenerative braking
  • 3.4. Off-grid wave harvesting
    • 3.4.1. Introduction
    • 3.4.2. CorPower Ocean Sweden
    • 3.4.3. Levant Power USA
    • 3.4.4. National Agency for New Energy Technologies (ENEA) Italy
    • 3.4.5. Oscilla Power USA magnetorestrictive
  • 3.5. HPEH in context: IRENA Roadmap to 27% Renewable
  • 3.6. Electric vehicle end game: free non-stop road travel
  • 3.7. Definition and characteristics
    • 3.7.1. Definition
    • 3.7.2. Overview of need
    • 3.7.3. Characteristics
  • 3.8. Market overview
    • 3.8.1. Largest value market by power
  • 3.9. Maturity of market by application
  • 3.10. Hype curve for energy harvesting applications
  • 3.11. EH systems
  • 3.12. Multiple energy harvesting
  • 3.13. Market forecast 2016-2026
    • 3.13.1. The big picture
    • 3.13.2. Forecasts by technology
    • 3.13.3. Overall market for transducers
    • 3.13.4. Market for power conditioning
  • 3.14. Technology timeline 2016-2025
  • 3.15. Detailed technology sector forecasts 2015-2025
    • 3.15.1. Electrodynamic
    • 3.15.2. Photovoltaic
    • 3.15.3. Thermoelectrics
    • 3.15.4. Territorial differences
  • 3.16. Photovoltaic
    • 3.16.1. Flexible, conformal, transparent, UV, IR
    • 3.16.2. Technological options
    • 3.16.3. Principles of operation
    • 3.16.4. Options for flexible PV
    • 3.16.5. Many types of photovoltaics needed for harvesting
    • 3.16.6. Spray on power for electric vehicles and more
  • 3.17. Powerweave harvesting and storage e-fiber/ e-textile

4. ENERGY AUTONOMOUS VEHICLES ON LAND

  • 4.1. Dalian sightseeing car China
  • 4.2. IFEVS microcar Italy
  • 4.3. Immortus car Australia
  • 4.4. NFH-H microbus China
  • 4.5. Solar racing cars worldwide
  • 4.6. Venturi Eclectic car France
  • 4.7. VineRobot Europe

5. ENERGY AUTONOMOUS BOATS AND SHIPS

  • 5.1. Loon pontoon boat Canada
  • 5.2. MARS Shuttleworth motor yacht, UK
  • 5.3. Milper Propeller Technologies Motor yacht, Turkey
  • 5.4. Rensea MARINA motor yacht Europe
  • 5.5. Seaswarm oil slick gathering robot, USA
  • 5.6. SoelCat motor boat Netherlands
  • 5.7. SolarLab tourist boats Germany
  • 5.8. Sun 21 Solar Boat
  • 5.9. Turanor Planet Solar Germany
  • 5.10. Vaka Moana motor yacht Netherlands
  • 5.11. Case Western Reserve University perovskite photovoltaics
  • 5.12. Wave and sun powered sea gliders
    • 5.12.1. Virginia Institute of Marine Science USA
    • 5.12.2. Falmouth Scientific Inc. USA
    • 5.12.3. Liquid Robotics USA
    • 5.12.4. US Naval Undersea Warfare Center

6. ENERGY INDEPENDENT AIRCRAFT

  • 6.1. Dirisolar airship France
  • 6.2. ETHZ UAV Switzerland
  • 6.3. ISIS airship USA
  • 6.4. Lockheed Martin airship USA
  • 6.5. NASA Helois USA
  • 6.6. Northrop Grumman airship USA
  • 6.7. Projet Sol'r Nepheleos France
  • 6.8. Solar Flight USA
  • 6.9. Solar Impulse Switzerland
  • 6.10. Solar Ship inflatable aircraft Canada
  • 6.11. Sunrise Solar airship Turkey
  • 6.12. Turtle Airships Spain

7. INTERVIEWS AND PRESENTATIONS 2015: EXAMPLES

  • 7.1. CargoTrike UK

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Energy autonomous vehicle types
  • 1.2. Speed range of EAVs in this report. Actual operating vehicles in green, planned in red.
  • 1.3. Numbers of electric vehicles, in thousands, sold globally, 2016-2026, by applicational sector
  • 1.4. Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2016-2026, by applicational sector, rounded
  • 1.5. Ex-factory value of EVs, in billions of US dollars, sold globally, 2016-2026, by applicational sector, rounded
  • 3.1. Maturity of HPEH technologies in adoption and development not age. Off-grid only with electricity used where made.
  • 3.2. Power density provided by different forms of high power energy harvesting. Best volumetric and gravimetric energy density.
  • 3.3. Some classical applications with the type of transducer and energy storage typically chosen
  • 3.4. Examples of uses of HPEH expressed as duration of harvesting available with examples of companies using or developing these applications
  • 3.5. Comparison of desirable features of the EH technologies. Good in red. Others are poor or not yet clarified.
  • 3.6. Typical transducer power range of the main technical options for HPEH transducer arrays - electrodynamic, photovoltaic and thermoelectric - and some less important ones shown in grey
  • 3.7. Potential for improving energy harvesting efficiency
  • 3.8. Typical power needs increasingly addressed by high power energy harvesting
  • 3.9. Power end game 2026 with winners shown in green. Areas with some activity but not dominant are shown clear
  • 3.10. Power density provided by different forms of HPEH with exceptionally useful superlatives in yellow. Other parameters are optimal at different levels depending on system design.
  • 3.11. Good features and challenges of the four most important EH technologies in order of importance
  • 3.12. Proliferation of electrodynamic harvesting options
  • 3.13. Global market for energy harvesting transducers at all power levels (units million) 2015-2026 rounded
  • 3.14. Global market for energy harvesting transducers at all power levels (unit price dollars) 2015-2026
  • 3.15. Global value market for energy harvesting transducers at all power levels (market value billion dollars) 2015-2026 rounded
  • 3.16. Main contributors to EH transducer sales 2015-2026. The technologies supplied by many large companies taking substantial orders are highlighted in orange.
  • 3.17. Timeline 2016-2025 with those advances most greatly impacting market size shown in yellow.
  • 3.18. Electrodynamics for Energy Harvesting units millions 2015-2025, dominant numbers in 2025 in yellow.
  • 3.19. Electrodynamic EH for regenerative braking in electric vehicles 2015-2025 number thousand
  • 3.20. Electrodynamic EH for regenerative braking in electric vehicles 2015-2025 notional unit value dollars given that these motors and generators double as other functions
  • 3.21. Notional total market value for electrodynamic EH for regenerative braking in electric vehicles 2015-2025 $ billion rounded
  • 3.22. Electrodynamic harvesting alternators in conventional internal combustion engined vehicles, number, notional unit value $ and value market $ billion 2015-2025
  • 3.23. Electrodynamic harvesting Other, mainly energy harvesting shock absorbers, number, notional unit value $ and value market $ billion 2015-2025
  • 3.24. Photovoltaics for Energy Harvesting MW peak million 2015-2025
  • 3.25. Thermoelectrics for Energy Harvesting units thousand 2015-2025
  • 3.26. Thermoelectrics for Energy Harvesting units value dollars 2015-2025
  • 3.27. Thermoelectrics for Energy Harvesting total value thousands of dollars 2015-2025
  • 3.28. Some highlights of global effort on energy harvesting
  • 3.29. Comparison of pn junction and photoelectrochemical photovoltaics
  • 3.30. The main options for photovoltaics beyond conventional silicon compared

FIGURES

  • 1.1. Progression from conventional vehicles to self-powered electric vehicles.
  • 1.2. Numbers of electric vehicles, in thousands, sold globally, 2016-2026, by applicational sector
  • 1.3. Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2016-2026, by applicational sector, rounded
  • 1.4. Ex-factory value of EVs, in billions of US dollars, sold globally, 2016-2026, by applicational sector, rounded
  • 2.1. Choices of range extender for hybrid electric vehicles compared with energy storage options and energy harvesting
  • 2.2. Sunseeker Duo
  • 2.3. Turanor and Solar Impulse
  • 3.1. The performance of the favourite energy harvesting technologies. Technologies with no moving parts are shown in red. Thermoelectric not so good when it needs fins or water cooling.
  • 3.2. Typical energy harvesting system
  • 3.3. Simplest scheme for vehicle regenerative braking
  • 3.4. Nissan Lithium-ion forklift with regenerative braking
  • 3.5. Mazda supercapacitor-based energy harvesting from reversing alternator during coasting and braking in a conventional car
  • 3.6. Regen braking research
  • 3.7. Energy harvesting from Levant Power
  • 3.8. Pendulum Wave Energy Converter (PEWEC)
  • 3.9. Triton
  • 3.10. Annual share of annual variable renewable power generation on-grid and off-grid 2014 and 2030 if all Remap options are implemented
  • 3.11. Examples of photovoltaics providing total power requirements of a vehicle, including motive power
  • 3.12. Examples of applications being developed 10W-100kW
  • 3.13. Technology focus of 200 organisations developing the different leading energy harvesting technologies
  • 3.14. Maturity of different forms of energy harvesting
  • 3.15. Hype curve snapshot for high power energy harvesting applications in 2015-6
  • 3.16. Hype curve snapshot for high power energy harvesting applications in 2026
  • 3.17. Hype curve for HPEH technology 2016
  • 3.18. Hype curve for HPEH technology 2026
  • 3.19. Institutions involved in airborne wind energy in 2015
  • 3.20. Proliferation of actual and potential energy harvesting in land vehicles
  • 3.21. Proliferation of actual and potential energy harvesting in marine vehicles
  • 3.22. Proliferation of actual and potential energy harvesting in airborne vehicles
  • 3.23. EH system diagram
  • 3.24. Multiple energy harvesting
  • 3.25. HPP structure
  • 3.26. HPP envisaged application in buildings
  • 3.27. Envisaged marine application of HPP
  • 3.28. HPEH including battery systems related to other off-grid and to on-grid harvesting market values in 2016
  • 3.29. Global installed renewable energy GW cumulative, off-grid and on-grid by source
  • 3.30. Global market for energy harvesting transducers at all power levels (units million) 2015-2026 rounded
  • 3.31. Global market for energy harvesting transducers at all power levels (unit price dollars) 2015-2026
  • 3.32. Global value market for energy harvesting transducers at all power levels (market value billion dollars) 2015-2026 rounded
  • 3.33. Energy harvesting organisations by continent
  • 3.34. Organisations active in energy harvesting by country, numbers rounded
  • 3.35. Kopf Solarshiff pure electric solar powered lake boats in Germany and the UK for up to 150 people
  • 3.36. NREL adjudication of efficiencies under standard conditions
  • 3.37. Powerweave
  • 4.1. Dalian golf car
  • 4.2. IFEVS energy autonomous microcars
  • 4.3. Immortus solar sports car
  • 4.4. NFH-H golf car
  • 4.5. Examples of solar racing cars
  • 4.6. Venturi Eclectic
  • 4.7. VineRobot work program
  • 5.1. Loon
  • 5.2. MARS
  • 5.3. Milper and the REP-SAIL project.
  • 5.4. Rensea MARINA
  • 5.5. Seaswarm
  • 5.6. SoelCat
  • 5.7. Alster Sun Hamburg Solar Shuttle
  • 5.8. Constance Solar Shuttle
  • 5.9. Turanor fact sheet
  • 5.10. Turanor construction process
  • 5.11. Vaka Moana
  • 5.12. Wave and sun power recharging a glider AUV before it resumes its mission
  • 5.13. Wave and sun powered sea glider
  • 5.14. Autonomous wave glider
  • 5.15. PACX Wave Glider
  • 5.16. Large autonomous robot jellyfish
  • 6.1. Dirisolar
  • 6.2. AtlantikSolar2
  • 6.3. ISIS concept
  • 6.4. Lockheed HALE-D
  • 6.5. Helios
  • 6.6. Solar surveillance airship ordered by the US military
  • 6.7. Nepheleos
  • 6.8. Sunstar
  • 6.9. Solar Impulse compared to jumbo jet
  • 6.10. Ghost pictures of Solar Impulse 2
  • 6.11. Round the world route
  • 6.12. Flight to Hawaii
  • 6.13. Solar Ship
  • 6.14. Operating principle
  • 6.15. Turtle airship concept
  • 7.1. Energy harvesting considered and rejected for autonomous short sea ship except possibly wave
  • 7.2. CargoTrike with 300W EIV with solar panel on top
Back to Top