Cover Image
市場調查報告書

熱傳導材料 (TIM) 2016 - 2026年:情形·機會·市場預測 - 闡明由於高分子·金屬熱材料的技術基準·市場評估而來的機會

Thermal Interface Materials 2016-2026: Status, Opportunities and Market Forecasts - Technology Benchmarking and Market Appraisal Hghlighting Opportunities for Polymeric and Metallic Thermal Materials

出版商 IDTechEx Ltd. 商品編碼 326441
出版日期 內容資訊 英文 206 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
熱傳導材料 (TIM) 2016 - 2026年:情形·機會·市場預測 - 闡明由於高分子·金屬熱材料的技術基準·市場評估而來的機會 Thermal Interface Materials 2016-2026: Status, Opportunities and Market Forecasts - Technology Benchmarking and Market Appraisal Hghlighting Opportunities for Polymeric and Metallic Thermal Materials
出版日期: 2016年04月25日 內容資訊: 英文 206 Slides
簡介

全球熱傳導材料 (TIM) 市場預測到2026年前將擴大到35億美元。

本報告提供熱傳導材料 (TIM) 市場相關調查分析,提供您種類,特徵,相關技術,新材料·技術,各用途的市場,市場情況,及今後的預測等彙整資料。

第1章 摘要整理

第2章 簡介

第3章 促進要素

  • 電子故障的原因
  • 電力電子技術用途的溫度上升
  • 電力電子技術用途的溫度降低
  • 使用TIM (熱傳導材料) 的潛在優點
  • 調查目的
  • 系統層級性能的主要因素

第4章 TIM (熱傳導材料)的特徵

  • TIM指定
  • 熱導率 vs 熱阻
  • TIM的熱實驗
  • TIM實驗的3個方法
  • 雷射閃光擴散率
  • Hot Disk
  • ASTM-D5470
  • ASTM D5470問題
  • 壽命試驗
  • 附著性實驗

第5章 TIM (熱傳導材料) 的種類

  • 10種TIM
  • 基準用語定義
  • 壓感式黏著膠帶
  • 熱液體黏劑
  • 熱潤滑脂(黃油)
  • 熱潤滑脂(黃油)相關問題
  • 熱潤滑脂(黃油)的黏性
  • 熱潤滑脂(黃油)相關技術資料
  • 填充材的效果,矩陣及熱傳導性相關加載
  • 熱凝膠
  • 熱黏貼
  • 凝膠·黏貼相關技術資料
  • 合成橡膠接墊
  • 合成橡膠接墊的優點及缺點
  • 相變物質
  • 市售的相變物質的運作溫度範圍
  • 石墨
  • 金屬TIM
  • 合金,以及相變金屬
  • 軟質合金 vs 硬質合金
  • 合金·相變金屬的優點及缺點
  • 合金的特徵
  • 壓縮性傳導材料
  • 液體金屬

第6章 TIM (熱傳導材料) 的基準

  • 影響TIM選擇的要素
  • 運作壓力
  • 空洞
  • TIM的特徵
  • TIM比較
  • 市售的TIM的熱傳導範圍
  • 市售的TIM的最大使用溫度
  • 填充劑的效率

第7章 相關技術

  • 散熱器
  • 熱基板技術
  • 浸漬冷卻

第8章 新材料·顛覆性技術

  • 熱解性石墨薄板 (PGS)
  • 奈米粒子穩定化合金:Kings College London
  • 奈米結構陶瓷:Cambridge Nanotherm
  • 熱潤滑脂(黃油)的新導電性粒子填充劑
  • 奈米碳管 (CNT)
  • 奈米碳管:Stanford University
  • 石墨烯
  • 石墨烯:XG Science
  • 石墨烯:NanoXplore
  • 石墨烯奈米微片:University of California Riverside
  • 奈米鑽石重點聚合物:Carbodeon
  • 2D氮化硼
  • 金屬奈米粒子填充劑:Inkron
  • 奈米結構金屬-聚合物複合材料:Chalmers University of Technology
  • 銀粉為基礎的導電性黏劑:昭和電工

第9章 市場

  • TIM的利用
  • 主要的必要條件:各用途
  • 材料:各用途
  • LED照明
  • LED照明的優點
  • 上升LED的溫度的效果
  • 太陽能光電發電
  • 氣溫對太陽能電池效率的效果
  • 聚光型太陽能光電發電
  • 雷射
  • 雷射技術的演進
  • 雷射二極體的包裝改善溫度控管
  • 雷射的TIM合金
  • 半導體熱包裝
  • 半導體熱包裝的目標應用
  • 企業用運算
  • 個人用運算
  • 個人電腦的TIM的案例
  • 個人電腦的TIM的多樣性
  • 行動終端裝置
  • 家電的TIM的案例
  • 通訊設備
  • 通訊設備的熱流束的增加
  • 國防·航太
  • 汽車電子產品
  • 醫療電子產品

第10章 新用途

  • 碳化矽半導體
  • 碳化矽半導體用TIM
  • GaN半導體
  • 穿戴式電子產品
  • IGBT
  • 熱電發電設備

第11章 專利·出版

  • Google趨勢
  • 全球專利公報
  • 科學日誌報導
  • 主要企業
  • TIM廠商

第12章 價值鏈

第13章 市場情況

  • TIM的成本
  • 市場佔有率:各TIM類型
  • 市場佔有率:各用途
  • 地區分析

第14章 預測

  • 預測:各TIM類型
  • 市場佔有率:各TIM類型
  • 預測:各用途
  • 市場佔有率:各用途
  • 預測
  • 預測:各TIM類型 (以金額為準)
  • 預測:各用途(以金額為準)
  • 前提條件

第15章 限制·抑制因素·威脅

第16章 全球性機會

第17章 企業簡介

  • 3M Electronic Materials
  • AI Technology
  • AIM Specialty Materials
  • AOS Thermal
  • Denka
  • DK Thermal
  • Dow Corning
  • Dymax Corporation
  • Ellsworth Adhesives
  • Enerdyne
  • European Thermodynamics Ltd
  • Fujipoly
  • Fralock
  • GrafTech
  • Henkel
  • Honeywell
  • Indium Corporation
  • Inkron
  • Kitagawa Industries
  • Laird Tech
  • LORD
  • MA Electronics
  • MH&W International
  • Minteq
  • Momentive
  • Parker Chomerics
  • Resinlab
  • Schlegel Electronics Materials
  • ShinEtsu
  • Timtronics
  • Universal Science

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

The market for thermal interface materials will reach $3.5bn by 2026.

Overheating is the most critical issue in the computer industry. It limits further miniaturisation, power, performance and reliability. The escalation of power densities in electronic devices has made efficient heat removal a crucial issue for progress in information, communication, energy harvesting, energy storage and lighting technologies. As long as electronic systems aren't monolithic, but are built from a wide range of materials such as metals, polymers, ceramics and semiconductors, there will be a need for thermal interface materials.

The contact area between high power, heat generating components and heat sinks can be as low as 3%, due to the micro-scale surface roughness. Thermal interface materials are required to enhance the contact between the surfaces, and decrease thermal interfacial resistance, and increase heat conduction across the interface.

Proper selection of Thermal Interface Materials is crucial for the device efficiency. Instead of sophisticated cooling technique, it is often better to invest in the interface material. Without good thermal contact, the use of expensive thermally conducting materials for the components is a waste.

The most appropriate choice of thermal interface material has been shown to:

  • Reduce total cost of ownership
  • Eliminate of the need for liquid cooling
  • Reduce system cooling power consumption
  • Reduce building power consumption
  • Increase operational lifetime

The geographic breakdown of sales of thermal interface materials, included in Thermal Interface Materials 2016-2026, demonstrates this is truly a global industry:

Breakdown of TIM sales by region

                        Source: IDTechEx

Innovation in this industry is driven forward by:

Thermal Interface Materials 2016-2026 includes a technology appraisal of the ten key technologies:

  • 1. Pressure-Sensitive Adhesive Tapes
  • 2. Thermal Adhesives
  • 3. Thermal Greases
  • 4. Thermal Gels, Pastes and Liquids
  • 5. Elastomeric Pads
  • 6. Phase Change Materials
  • 7. Graphite
  • 8. Solders and Phase Change Metals
  • 9. Compressible Interface Materials
  • 10. Liquid Metals

The technologies and chemistries are described and compared, and performance data from a wide selection of commercially available products is benchmarked.

There are many current and growing opportunities for these technologies to be used in the following markets:

  • LED lighting
  • Photovoltaics
  • Lasers
  • Telecommunications equipment
  • Automotive electronics
  • Industrial computing
  • Defence and aerospace electronics
  • Consumer and mobile handhold electronics
  • Medical electronics
  • Wireless sensor networks
  • PCB testing equipment

The importance and uses of TIMs in these industries, the materials used most frequently and the market size is presented.

The state of the market in 2016, a geographic breakdown of the market, and forecasts to 2026, are separated by TIM type and by application. These have been compiled after an extensive interview program with thermal interface material manufacturers making a variety of materials, and many different applications, and using financial data published by public companies. Thermal Interface Materials 2016-2026 includes profiles of 31 companies working in this industry.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Potential benefits of using TIMs
  • 1.2. Drivers for the improvement of TIMs
  • 1.3. Properties of Thermal Interface Materials
  • 1.4. Research Aims
  • 1.5. Uses for thermal interface materials
  • 1.6. Key requirements by application
  • 1.7. Materials by Application
  • 1.8. Market Share by TIM type in 2016
  • 1.9. Market Share by Application in 2016
  • 1.10. Forecast by TIM type
  • 1.11. Forecast by Application
  • 1.12. Factors affecting adoption
  • 1.13. Opportunities for developments
  • 1.14. Growing Markets

2. INTRODUCTION

  • 2.1. Schematics to show the role of Thermal Interface Materials
  • 2.2. Comparison to Die Attach Technologies

3. DRIVERS

  • 3.1. Causes of Electronic Failure
  • 3.2. Temperature increase in Power Electronic Applications
  • 3.3. Reducing temperature in Power Electronics Applications
  • 3.4. Potential benefits of using TIMs
  • 3.5. Drivers for the improvement of TIMs
  • 3.6. Research Aims
  • 3.7. Key Factors in System Level Performance

4. CHARACTERISING TIMS

  • 4.1. TIM Designation
  • 4.2. Thermal Conductivity vs Thermal Resistance
  • 4.3. Thermal Testing of TIMs
  • 4.4. Three Methods for Testing of TIMs
  • 4.5. Laser Flash Diffusivity
  • 4.6. Hot Disk
  • 4.7. ASTM-D5470
  • 4.8. Problems with ASTM D5470
  • 4.9. Life-time Testing
  • 4.10. Adhesion Testing

5. TYPES OF THERMAL INTERFACE MATERIAL

  • 5.1. Ten Types of Thermal Interface Material
  • 5.2. Definitions of Benchmarking Terms
  • 5.3. Pressure-Sensitive Adhesive Tapes
  • 5.4. Thermal Liquid Adhesives
  • 5.5. Thermal Greases
  • 5.6. Problems with thermal greases
  • 5.7. Viscosity of Thermal Greases
  • 5.8. Technical Data on Thermal Greases
  • 5.9. The effect of filler, matrix and loading on thermal conductivity
  • 5.10. Thermal Gels
  • 5.11. Thermal Pastes
  • 5.12. Technical Data on Gels and Pastes
  • 5.13. Elastomeric pads
  • 5.14. Advantages and Disadvantages of Elastomeric Pads
  • 5.15. Phase Change Materials (PCMs)
  • 5.16. Operating Temperature Range of Commercially Available Phase Change Materials
  • 5.17. Graphite
  • 5.18. Metal TIMs
  • 5.19. Solders or Phase Change Metals
  • 5.20. Which solder?
  • 5.21. Soft Solder vs Hard Solder
  • 5.22. Advantages and Disadvantages of Solders and Phase Change Metals
  • 5.23. Properties of solders
  • 5.24. Compressible Interface Materials
  • 5.25. Liquid Metal

6. BENCHMARKING OF THERMAL INTERFACE MATERIALS

  • 6.1. Factors which influence the choice of TIM
  • 6.2. Operating Pressure
  • 6.3. Voids
  • 6.4. Properties of Thermal Interface Materials
  • 6.5. Comparison of Thermal Interface Materials
  • 6.6. Bounds on Thermal Conductivity of Commercially Available Thermal Interface Materials
  • 6.7. Maximum Operating Temperature of Commercially Available Thermal Interface Materials
  • 6.8. Efficiencies of fillers

7. RELATED TECHNOLOGIES

  • 7.1. Heat Spreaders
  • 7.2. Thermal Substrate Technologies
  • 7.3. Immersion Cooling
  • 7.4. Metallic foam heat exchangers - Versarien

8. EMERGING MATERIALS AND DISRUPTIVE TECHNOLOGIES

  • 8.1. Pyrolytic Graphite Sheet (PGS)
  • 8.2. Nanoparticle-Stabilized Solders - Kings College London
  • 8.3. Nano-structured ceramics - Cambridge Nanotherm
  • 8.4. New Conducting Particle Fillers for Thermal Greases
  • 8.5. Carbon Nanotubes (CNT)
  • 8.6. Carbon nanotubes - Stanford University
  • 8.7. Graphene
  • 8.8. Graphene - XG Science
  • 8.9. Graphene - NanoXplore
  • 8.10. Graphite Nanoplatelet - University of California Riverside
  • 8.11. Nanodiamond filled polymers - Carbodeon
  • 8.12. 2D Boron Nitride
  • 8.13. Metal nanoparticle fillers - Inkron
  • 8.14. Nanostructured metal-polymer composites - Chalmers University of Technology
  • 8.15. Silver flake-based conductive adhesives - Showa Denko

9. MARKETS

  • 9.1. Uses for thermal interface materials
  • 9.2. Key requirements by application
  • 9.3. Materials by Application
  • 9.4. LED Lighting
  • 9.5. Advances in LED lighting
  • 9.6. Effects of increasing the temperature of an LED
  • 9.7. Photovoltaics
  • 9.8. Effect of Temperature on Solar Cell Efficiency
  • 9.9. Concentrated Photovoltaics
  • 9.10. Lasers
  • 9.11. Evolution of laser technology
  • 9.12. Packaging of Laser Diodes to improve Thermal Management
  • 9.13. Solder as the TIM in lasers
  • 9.14. Semiconductor Thermal Packaging
  • 9.15. Targeted applications within Semiconductor Thermal Packaging
  • 9.16. Enterprise Computing
  • 9.17. Personal Computing
  • 9.18. Examples of TIMs in Personal Computing
  • 9.19. Varieties of TIM in Personal Computing
  • 9.20. Mobile Hand-held Devices
  • 9.21. Examples of TIM in Consumer Electronics
  • 9.22. Telecommunications Equipment
  • 9.23. Increasing heat flux from telecommunication equipment
  • 9.24. Defence and Aerospace
  • 9.25. Automotive Electronics
  • 9.26. Medical Electronics

10. EMERGING APPLICATIONS

  • 10.1. Silicon Carbide Semiconductors
  • 10.2. TIMs for Silicon Carbide Semiconductors
  • 10.3. GaN Semiconductors
  • 10.4. Wearable Electronics
  • 10.5. IGBT
  • 10.6. Thermoelectric Generators

11. PATENTS AND PUBLICATIONS

  • 11.1. Google Trends
  • 11.2. Worldwide Patent Publications
  • 11.3. Scientific Journal Articles
  • 11.4. Key Players
  • 11.5. Thermal Interface Material Manufacturers
  • 12. VALUE CHAINS

13. STATE OF THE MARKET IN 2016

  • 13.1. Cost of TIM
  • 13.2. Market Share by TIM type in 2016
  • 13.3. Market Share by Application in 2016
  • 13.4. Geographic Breakdown

14. FORECAST 2016-2026

  • 14.1. Forecast by TIM type
  • 14.2. Market Share by TIM type in 2026
  • 14.3. Forecast by Application
  • 14.4. Market Share by Application in 2026
  • 14.5. Forecast Narrative
  • 14.6. Forecast by TIM Type ($M)
  • 14.7. Forecast by Application Type ($M)
  • 14.8. Assumptions

15. LIMITATIONS, RESTRAINTS AND THREATS

  • 15.1. Factors affecting adoption
  • 15.2. Threats to the Industry
  • 15.3. Global Opportunities
  • 15.4. Opportunities for developments

16. THE WINNERS WILL ADDRESS...

  • 16.1. Growing Markets

17. COMPANY PROFILES

  • 17.1. 3M Electronic Materials
  • 17.2. AI Technology
  • 17.3. AIM Specialty Materials
  • 17.4. AOS Thermal
  • 17.5. Denka
  • 17.6. DK Thermal
  • 17.7. Dow Corning
  • 17.8. Dymax Corporation
  • 17.9. Ellsworth Adhesives
  • 17.10. Enerdyne
  • 17.11. European Thermodynamics Ltd
  • 17.12. Fujipoly
  • 17.13. Fralock
  • 17.14. GrafTech
  • 17.15. Henkel
  • 17.16. Honeywell
  • 17.17. Indium Corporation
  • 17.18. Inkron
  • 17.19. Kitagawa Industries
  • 17.20. Laird Tech
  • 17.21. LORD
  • 17.22. MA Electronics
  • 17.23. MH&W International
  • 17.24. Minteq
  • 17.25. Momentive
  • 17.26. Parker Chomerics
  • 17.27. Resinlab
  • 17.28. Schlegel Electronics Materials
  • 17.29. ShinEtsu
  • 17.30. Timtronics
  • 17.31. Universal Science
Back to Top