Cover Image
市場調查報告書

自動駕駛工具:陸、海、空區域 (2017-2037年)

Autonomous Vehicles Land, Water, Air 2017-2037

出版商 IDTechEx Ltd. 商品編碼 325859
出版日期 內容資訊 英文 151 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
自動駕駛工具:陸、海、空區域 (2017-2037年) Autonomous Vehicles Land, Water, Air 2017-2037
出版日期: 2016年10月26日 內容資訊: 英文 151 Slides
簡介

本報告提供陸、海、空區域的各種自動駕駛工具市場調查,提供您自動性定義,對象,合理性,各種技術匯流與其所伴隨的課題,自動駕駛工具技術主要的終端用戶部門與用途,利用案例,各種R&D趨勢,彙整相關的系統技術,軟體·處理器技術,LIDAR等趨勢,能源自給型的移動工具 (EIV)趨勢等資料。

第1章 摘要整理·總論

  • 導航·事務·電力的自動性
  • 自動性的層級
  • 自動性的合理性
  • 很多自動駕駛車的實驗
  • 自動性的評估
  • 各種技術的匯流與新的課題
  • 提供購買價值的自動性
  • 用語
  • 導航·事務·電力的自動性:案例
  • EIV的技術
  • 自動性的技術
  • 自動駕駛車:目前參與企業
  • 市場預測
    • EV·48v輕度混合動力車:銷售台數
    • EV·48v輕度混合動力車:銷售額
    • EV市場規模實際成果
    • EV市場規模預測
    • 第3-5級自動駕駛車
    • 動力傳動·自動性硬體設備的相對重要性
    • 自動駕駛車用軟體
    • 自動駕駛車AMoD的需求
    • 美國的自動駕駛車:潛在市場
    • 農業用機器人·無人機的10年預測:各類型·功能
    • 自動性潛水艇AUV
  • 自動性發展藍圖
    • 短期
    • 長期
    • 感測器·相關技術
    • EIV技術

第2章 簡介

第3章 主要終端用戶部門

  • 農業用機器人·無人機
    • 超精密農業
    • 轉換到多數的低速·低價的無人農業用機器人
    • 市場·技術的支援度:農業活動別
  • 自規則船
  • 自主式無人潛水機 (AUV)
    • AUV的必要性
    • 功能
    • 案例:Seastick
    • Urashima AUV Japan

第4章 5級自動駕駛工具系統技術

  • 難易度的程度
  • 倉儲業·物流的自動駕駛工具
  • 自動性技術概要:陸、海、空區域
  • 陸上用硬體設備Toolkit

第5章 自動性軟體·處理器技術

  • 任務中心型的演進
    • Airware
    • Skydio
    • Gateway
  • 自動駕駛工具平台:感測性·控制性的功能圖
  • 完全的自動駕駛工具的處理

第6章 自動駕駛工具的LIDAR

第7章 能源自給型自動駕駛工具:航太·陸上·水域

  • 電力移動工具的動力傳動發展
  • 主要的實行技術
  • Com-BAT的監視機
  • Northrop Grumman的監視用飛艇的展望
  • Mitre的DARPA用飛艇
  • Titan Aerospace的UAV
  • Solar Eagle的UAV
  • Aurora Flight Sciences的無人EIV機等

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

This unique commercially oriented report has detailed market and technical analysis with many new infograms, conference slides, roadmaps and forecasts. It is based on global research by PhD level multi-lingual analysts in 2016 with frequent updates. The Executive Summary and Conclusions is insightful, detailed yet easily assimilated. An introduction gives an overview of the technologies and a chapter analyses important applications followed by a chapter on general Level 5 autonomy technology then one specifically on software and processor technology for them. A chapter covers LIDAR and associated technologies and a final chapter scopes autonomous energy independent vehicles.

Autonomous vehicles need no pilot, or even one in reserve, for at least some of the time. Many are unmanned mobile robots. Their time has come as they prowl everywhere from the ocean depths to the upper atmosphere and outer space. They are creating billion dollar businesses such as aircraft and airships aloft for five to ten years on sunshine alone carrying out surveillance or beaming the internet to the 4.5 billion people who lack it. Yes, independence of energy and electrification are closely related to this. Many land, water and airborne autonomous vehicles are already energy independent too, making the autonomy task easier. Most autonomous vehicles will be electric so the subject is also closely related to the electric vehicle scene.

This report looks at the whole subject in a critical manner revealing how the electric vehicle business at over $0.7 trillion in 2017 will include many new autonomous forms creating one billion dollar businesses for both the vehicles and their components. On the other hand, it shows how part of this story is the arrival of peak internal combustion engine, peak lead acid battery and peak car within 15 years causing mayhem in the industries involved. We note that suppliers plan to sell a lot of autonomous cars to private individuals yet 70% of us will live in cities soon where cars, autonomous or not, will be banned or severely dissuaded from entering. We question whether the necessary price increases can stick for private cars but note a host of applications where premium pricing will be no problem at all, such are the benefits.

The report reveals the many very different reasons for adoption of autonomous vehicles in commercial, industrial, military, marine, aerospace and other applications and the very different degree of difficulty in achieving what is needed. Impediments are inspected, from insurance, legal, privacy and multiple road use issues to cost reducing hardware and software and making it more capable. Will the biomimetic approach of minimal sensors and superb sensor fusion software and data management prevail or are we headed for a burgeoning amount of hardware of increasing sophistication? Which types of electric vehicle land water and air are most promising for autonomy and when? What are the lessons of combining autonomy of navigation, task and energy such as electricity from sun, wind, waves, tide, thermals? Which developers are showing most promise? Where is the money being spent? Which projects will end in tears and where are things on the hype curve today? Why are search and rescue and agriculture such promising applications?

What robot vehicles form a good escape route for car makers seeing car sales collapse? The programmer of the autonomous vehicle may make it act and react in the interests of society as a whole, for example killing the minimum number of people in an accident rather than acting in the interests of any passengers. Which is the right approach? This report addresses the issues with a balanced appraisal of it all.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Autonomy of navigation, task and power
  • 1.2. Levels of autonomy
  • 1.3. Why have autonomy?
    • 1.3.1. Aerospace
    • 1.3.2. Agriculture
    • 1.3.3. Car - taxi - bus
    • 1.3.4. Industrial shipping
    • 1.3.5. Search and rescue
    • 1.3.6. Underwater
  • 1.4. Many autonomous car trials
    • 1.4.1. First-ever public trial of a robo-taxi service
  • 1.5. Autonomy hits sales of cars but not of other vehicles
    • 1.5.1. Increasing hostility to private cars in cities whether autonomous or not
  • 1.6. Convergence of technologies and new challenges
    • 1.6.1. Overview
    • 1.6.2. Legal issues BMW view
    • 1.6.3. Operational challenges
    • 1.6.4. Technical challenges
    • 1.6.5. Ethical challenges
    • 1.6.6. Insurance challenges
  • 1.7. Hype curve for autonomy today
  • 1.8. Strength of autonomy purchase propositions
  • 1.9. Terminology
  • 1.10. Autonomy of navigation, task and power: examples
    • 1.10.1. Example: Vinerobot micro EV Europe
    • 1.10.2. MARS boat UK
    • 1.10.3. Seaglider AUV boat USA
  • 1.11. Technologies of EIVs
    • 1.11.1. EIV technology past, present and concept on land
    • 1.11.2. EIVs technology past, present and concept on and under water
    • 1.11.3. EIV technology past, present and concept in the air
    • 1.11.4. Space exploration
  • 1.12. Technology of autonomy
    • 1.12.1. Land, water, air
    • 1.12.2. Typical toolkit for autonomy of on-road vehicles
  • 1.13. The current players in on-road autonomy
  • 1.14. Market forecasts
    • 1.14.1. IDTechEx EV and 48V mild hybrid global forecasts number K 2017-2027
    • 1.14.2. IDTechEx EV and 48V mild hybrid global forecasts $ billion 2017-2027
    • 1.14.3. EV Market Value US$ Billion 2017
    • 1.14.4. EV Market Value US$ Billion 2027
    • 1.14.5. On-road Level 3-5 autonomous vehicles forecasts
    • 1.14.6. Relative importance of powertrain and autonomy hardware markets 2017-2037
    • 1.14.7. Software in on-road applications 2014-2030
    • 1.14.8. AMoD Demand for autonomous cars 2016-2035
    • 1.14.9. US on-road addressable market
    • 1.14.10. Ten-year market forecasts for all agricultural robots and drones segmented by type and/or function
    • 1.14.11. Autonomous Underwater Vehicle AUV market 2016-2022
  • 1.15. Autonomy roadmap
    • 1.15.1. Autonomy roadmap 2018-2020
    • 1.15.2. Autonomy roadmap 2023-2040
    • 1.15.3. Sensor and allied technology roadmap
    • 1.15.4. EIV technology roadmap 2017-2036

2. INTRODUCTION

  • 2.1. Definition and building blocks
  • 2.2. Progress towards full autonomy
  • 2.2.1. Simplifying the environment
  • 2.3. Connectivity and automation reduce fuel consumption
  • 2.4. Level 5 autonomous vehicles
  • 2.5. Autonomous vehicles are best when they are electric
  • 2.6. Benefits of autonomy

3. SOME IMPORTANT APPLICATIONAL SECTORS

  • 3.1. Agricultural Robots and Drones
    • 3.1.1. Ultra precision farming
    • 3.1.2. Transition to swarms of slow, cheap, unmanned agricultural robots
    • 3.1.3. Market and technology readiness by agricultural activity
  • 3.2. Autonomous ships
  • 3.3. Autonomous Underwater Vehicles AUV
    • 3.3.1. Why AUVs are necessary
    • 3.3.2. Features
    • 3.3.3. Examples: Seastick
    • 3.3.4. Urashima AUV Japan

4. LEVEL 5 AUTONOMOUS VEHICLE SYSTEM TECHNOLOGY

  • 4.1. Degree of difficulty
  • 4.2. Autonomous vehicles in warehousing and logistics
  • 4.3. Autonomy technology overview: land, water, air
    • 4.3.1. Examples of technologies
    • 4.3.2. Five basic building blocks.
  • 4.4. Hardware toolkit on land

5. SOFTWARE AND PROCESSOR TECHNOLOGY FOR AUTONOMY

  • 5.1. Mission centric advances
    • 5.1.1. Airware
    • 5.1.2. Skydio
    • 5.1.3. Gateway
  • 5.2. Autonomous vehicle platform: functional diagram for sensing and control
  • 5.3. Processing for fully autonomous vehicles
    • 5.3.1. Overview
    • 5.3.2. Capabilities/limitations
    • 5.3.3. Beyond microcontrollers
    • 5.3.4. System on a Chip (SoC)
    • 5.3.5. Sensor fusion
    • 5.3.6. MCU architectures
    • 5.3.7. Consolidation on the ARM architecture
    • 5.3.8. Open source hardware
    • 5.3.9. Moore's Law for processing
    • 5.3.10. Prices equilibrating
    • 5.3.11. Trends
    • 5.3.12. SBC market

6. LIDAR FOR AUTONOMOUS VEHICLES

  • 6.1. LIDAR for autonomous vehicles

7. AUTONOMOUS ENERGY INDEPENDENT VEHICLES EIV; AEROSPACE, LAND, WATER

  • 7.1. End game is energy independent pure electric not dynamic charging
  • 7.2. Electric vehicle powertrain evolution: typical figures expected for cars
  • 7.3. Key enabling technologies by powertrain
  • 7.4. Com-BAT surveillance bat
  • 7.5. Solar Ship EIV helium inflatable fixed wing aircraft Canada autonomous, sun alone
  • 7.6. Northrop Grumman surveillance airship up for 10 years
  • 7.7. Mitre DARPA airship USA
  • 7.8. Titan Aerospace UAV USA
  • 7.9. Solar Eagle UAV USA
  • 7.10. Self assembling autonomous unmanned EIV aircraft Aurora Flight Sciences
Back to Top