Cover Image
市場調查報告書

伸縮性電子產品 (可伸縮電子):2017-2027年

Stretchable and Conformal Electronics 2017-2027

出版商 IDTechEx Ltd. 商品編碼 314816
出版日期 內容資訊 英文 195 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
伸縮性電子產品 (可伸縮電子):2017-2027年 Stretchable and Conformal Electronics 2017-2027
出版日期: 2017年02月14日 內容資訊: 英文 195 Slides
簡介

伸縮性電子產品材料·零組件市場預測在2027年將成長超過6億美元的規模。

本報告提供全球伸縮性電子產品 (可伸縮電子)的市場調查,彙整伸縮性電子產品定義和概要,材料·用途的開發趨勢,主要產品範例,企業·學術研究機關的措施,影響市場成長因素分析,課題,競爭環境,主要加入企業等相關最新資訊。

第1章 摘要整理

第2章 簡介

第3章 伸縮性電子的風格 (E紡織品)

  • 電子的風格 (E紡織品)
  • 傳統導電性纖維範例
  • 伸縮性電子用線
  • 線式伸縮性線
  • 混合線:導電性·彈性·舒適性
  • 伸縮性電子布料
  • 伸縮性E布料零組件範例
  • 目前E紡織品的伸縮性布料
  • 伸縮性電子產品的設計趨勢等

第4章 伸縮性導電油墨

  • 伸縮性墨水:概要
  • 銷售中的伸縮性導電油墨
  • 伸縮性導電油墨的性能
  • 伸縮性導電油墨性能的進步與改善
  • 伸縮性墨水上粒子尺寸·樹脂所扮演的角色
  • 伸縮性導電油墨上模式設計所扮演的角色
  • 伸縮性導電油墨的耐清洗性
  • 伸縮性墨水的封裝選項
  • 石墨烯式伸縮性導電油墨
  • e紡織品上的石墨烯電熱器
  • E紡織品上的伸縮性導電油墨範例等

第5章 套模成型用導電油墨

  • 套模成型用電子產品:工程·必要條件
  • 套模成型用電子用伸縮性導電油墨
  • 套模成型用電子產品:多階段流程
  • 套模成型用電子產品的用途
  • 銷售中的套模成型用導電油墨
  • 利用了套模成型用導電油墨的產品範例等

第6章 伸縮性·套模成型用透明導電性薄膜

  • 奈米碳管透明導電性薄膜:銷售中的產品性能
  • 伸縮性奈米碳管透明導電性薄膜
  • 奈米碳管套模成型用透明導電性薄膜製品範例
  • PEDOT透明導電性薄膜
  • 金屬網膜透明導電性薄膜:運行原理·特徵
  • 金屬網膜透明導電性薄膜的製造法
  • 套模成型用·伸縮性金屬網膜透明導電性薄膜
  • 伸縮性銀奈米線透明導電性薄膜等

第7章 伸縮性電子用基板

  • 伸縮性電子用基板的選項
  • Panasonic的電子電路附著伸縮性絕緣樹脂薄膜

第8章 伸縮性感測器

  • 簡介
  • 高失真感測器
  • 感應電性EAP的利用
  • EAP相關企業
  • 其他力感測器
  • 力量感測器範例
  • 介面貼片感測器的伸縮性
  • 案例:化學感測器的伸縮性
  • 案例:身體安裝型電極
  • 學術機構的措施範例等

第9章 熱成型 聚合物致動器

第10章 能源儲存:伸縮性電池·超級電容器儲能

  • 源自材料的伸縮性
  • 彈性·傳統鋰離子電池比較
  • 源自設備設計的伸縮性
  • 電極設計·架構的重要性
  • 伸縮性鋰離子電池
  • 伸縮性超級電容器儲能
  • 伸縮性能源採集
  • 伸縮性容量性能源採集
  • 伸縮性摩擦電能源採集
  • 壓電奈米發電機等

第11章 伸縮性或超彈性電路基板

  • 伸縮性或超彈性的電路基板 (Reebok)
  • 穿戴式&顯示器用途的薄型·彈性PCB範例
  • 各種用途的薄型·彈性PCB範例
  • 伸縮性印刷電路基板
  • Fraunhofer IZM的伸縮性電子產品
  • 案例等

第12章 伸縮性顯示器

  • 伸縮性顯示器
  • 超伸縮性HLEC顯示器
  • 伸縮性電泳顯示器等

第13章 伸縮性電晶體

  • 伸縮性薄膜電晶體
  • 晶體伸縮性高性能電路
  • 晶體伸縮性高性能電路範例
  • 電子皮膚的最新進步
  • 伸縮性矽式人造皮膚感測器
  • 伸縮性LED照明陣列
  • 非常薄彈性矽晶片等

第14章 市場

  • 伸縮性電子產品的主要市場
  • 各產品類型比較
  • 介面貼片
  • 服裝
  • 其他紡織品用途
  • 醫療設備
  • CE設備
  • EC STELLA計劃
  • 界內鞋底壓力監測
  • 壓縮服裝
  • 無線活動監視器等

第15章 預測

  • E紡織品的伸縮性電子產品
  • 伸縮性電子產品數的轉變·預測
  • 伸縮性電子產品數的轉變·預測:各產品類型
  • 伸縮性零組件銷售規模的轉變·預測
  • 伸縮性材料&零組件收益的轉變·預測
  • 伸縮性導電性材料的收益明細:墨水·紡織品·聚合物
  • 收益明細:mold inks·TCF
  • 伸縮性感測器的收益明細
  • 收益明細:伸縮性能源儲存·能源採集等

第16章 企業簡介·採訪

第17章 附錄

第18章 企業資料

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

The market for materials and components for stretchable electronics will be over $600m by 2027.

This report provides you with everything that you need to know about stretchable electronics. It provides the most comprehensive and insightful view of this diverse emerging industry, assessing more than 32 product areas, analysing more than 16 different stretchable materials/components, covering the progress of more than 87 companies and 25 research institutes including first-hand primary research on 59 companies, and giving ten-year market forecasts segmented by more than 7 application and 15 material/component areas.

This report develops a critical technology assessment for a vast array of emerging stretchable electronic materials and components. These include stretch sensors, stretchable ink-, yarn-, or wire-based interconnects, stretchable transparent conductive films, stretchable PCBs, haptics and actuators, transistors and logic, energy harvesters, batteries, supercapacitors, encapsulates, substrates, and so on. Our forecasts are segmented by 15 different stretchable component types.

This report also provides a detailed view of end use markets including healthcare & medical, automotive, consumer, sports & fitness, industrial, and so on. The ten-year forecasts are segmented by 7 key markets and at least 7 product types such as robotics, apparel textiles, non-apparel textiles, skin patches, and so on.

Technology insight and business intelligence based on years of primary research

This report is the result of years of global primary research on stretchable electronics itself, but also on its constituent elements and target applications. Our analysts, for example, have been covering conductive inks, in-mold electronics, electronic textiles, flexible/stretchable printed circuit boards, wearable technologies, stretchable sensors, stretchable transparent conductive films, and structural electronics and so on.

In the past three years alone, we have met and/or interviewed at least 60 companies active in the value chain of stretchable electronics, attended more than 15 conferences/tradeshows across the world where stretchable electronic products were discussed/exhibited, and delivered multiple tailored consulting projects.

In addition, for the past decade, we have been organising the IDTechEx Show!, a business-focused bi-annual conference and tradeshow focused on electronics with new form factors. This show has given us a window to stay connected with the leading players as the industry has evolved.

Stretchable Electronics: enabling the future of electronics

The electronic industry is in the midst of a major paradigm shift: novel form factors are emerging ranging from limited flexibility to ultra-elastic and conformable electronics. This transfiguration has, of course, been in the making for more than a decade now, but it is only now that it is beginning to make a substantial commercial impact.

This shift is not an incremental or a sustaining technology that furthers technology performance along well-established industry lines. Instead, it seeks to create new functions, new applications, and new users. As such, this technology frontier currently only has vague figures-of-merit and limited insight on customer needs.

Indeed, many opponents have long argued that this entire class of emerging materials/devices is a classic case of technology-push, a solution looking for a problem. This view may have been right in the early days, but we now see this trend as an essential step towards the inevitable endgame of new electronics: structural electronics.

Structural electronics is a disruptive megatrend that will transform traditional electronics from being components-in-a-box into truly invisible electronics that part of the structure. This is a major long-term innovation that we lead to a root-and-branch change of the electronic industry including its value chain, its materials, its components, and so on. Stretchable and conformable electronics is giving shape to this megatrend. Indeed, it enables it.

Out of the lab and into the market

Stretchable Electronics is an umbrella term that conceals great diversity. It refers to a whole host of emerging electronic materials, components and devices that exhibit some degree of mechanical stretchability. These include interconnects, sensors, actuators, functional films, batteries, logic, displays and so on. It is therefore an emerging technology frontier that simply cannot be painted with a broad brush.

In fact, this emerging frontier covers diverse technologies, each sitting on a different point on the technology/market readiness spectrum. Indeed, some stretchable electronics components are on the cusp of entering the markets, whereas several others are still in the proof-of-concept stage. We expect that this technology frontier will soon fragment, with some constituents becoming successful commercial stories, whilst others remain largely an academic curiosity.

This ship is beginning to sail now. Indeed, we anticipate that in many cases the winners will emerge within the next 3-5 years. This is why companies now need to urgently establish a closer collaboration between their commercial and research units, and should follow a strategy of touching upon as many nascent application spaces as their bandwidth allows to garner feedback, offer customized solutions, and fine-tune their research direction.

In this report we provide a critical assessment of all the existing and emerging technologies. You will learn about the technology readiness levels, latest performance levels, unsolved technical challenges, late-stage or commercial prototypes, and so on. You will also learn about the emerging global business ecosystem pushing each technology.

No longer just a solution looking for a problem

Struetchable lectronics is no longer just a solution looking for a problem. Indeed, it is finding commercial use in both niche applications in hard-to-find sectors as well as in high-volume visible products. It delivers strong value in multiple applications, at times as an enabling technology, whilst it remains an unessential or underperforming solution amongst many in others. The application space therefore also cannot be painted with a broad brush as it is diverse and fragmented. The success will be in the detail.

This report provides a detailed pipeline of applications. It covers both niche and mainstream use cases. It critically assesses the latest developments within each sector including latest commercial products, late-stage porotypes, market challenges, anticipated growth and so on. In fact, our report provides ten-year market forecasts segmented by 7 markets and 32 product types in 7 areas.

What does this report provide?

  • 1. Critical review and appraisal of all the existing and emerging stretchable electronics materials and components including stretch sensors, stretchable ink-, yarn-, or wire-based interconnects, stretchable transparent conductive films, stretchable PCBs, energy harvesters, batteries, supercapacitors, encapsulates, substrates, and so on.
  • 2. Analysis of target markets including value proposition, market/technical challenges, real examples of latest products/prototypes, and market forecasts.
  • 3. Ten-year market forecasts segmented by end market (automotive, health care & medical, sports & fitness; consumer; automation; and so on), product type (robotics, skin patches, apparel and non-apparel electronic textiles, and so on), or component (resistive, capacitive, and dielectric elastomer stretch sensors; ink, yarn and wire-based interconnects; inks and transparent conductive films for inks; stretchable transistors, displays, actuators, and so on)
  • 4. Coverage and/or profiles of more than 60 companies based on primary research including in-person visits, interviews, tradeshow/conference interactions and so on.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. The evolving form factor of electronics
  • 1.2. Technology Readiness Chart: by technology
  • 1.3. Number of products containing stretchable electronics, by market sector (2017-2027)
  • 1.4. Number of products containing stretchable electronics, by product type (2017-2027)
  • 1.5. Sales volumes of stretchable components (2017-2027)
  • 1.6. Revenue from stretchable materials & components, (2017-2027)
  • 1.7. Stretchable electronics in e-textiles

2. INTRODUCTION

  • 2.1. Definitions and inclusions
  • 2.2. Stretchable electronics: Where is the money so far?
  • 2.3. Why do we need stretchable electronics?
    • 2.3.1. Characterising a stretchable substrate
    • 2.3.2. Conformal electronic functionality on custom shapes
    • 2.3.3. Smart skin
  • 2.4. Megatrends
  • 2.5. The megatrend towards ubiquitous electronics
  • 2.6. Our ubiquitous electronics will be stretchable
  • 2.7. Technology Readiness Chart: by technology

3. STRETCHABLE ELECTRONIC TEXTILES (E-TEXTILES)

  • 3.1. Electronic Textiles (E-Textiles)
  • 3.2. Most conductive fibres are not stretchable (with exceptions)
  • 3.3. Examples of traditional conductive fibres
  • 3.4. Academic exceptions:
    • 3.4.1. UT, Dallas: SEBS / NTS stretchable wires
    • 3.4.2. Sungkyunkwan University - PU & Ag nanoflowers
    • 3.4.3. MIT: Stretch sensors using CNTs on polybutyrate
  • 3.5. Yarns for stretchable electronics
  • 3.6. Commercial wire-based stretchable yarns
  • 3.7. Hybrid yarns can be conductive, elastic and comfortable
  • 3.8. Conductive yarns from Natural Fibre Welding
  • 3.9. Stretchable electronic fabrics
  • 3.10. Examples of stretchable electronic fabric components
  • 3.11. Stretchable fabrics in e-textiles today
  • 3.12. Design trends to accommodate stretchable electronics

4. STRETCHABLE CONDUCTIVE INKS

  • 4.1. Stretchable inks: general observations
  • 4.2. Stretchable conductive inks on the market (Jujo Chemical, Ash Chemical, EMS/Nagase, Toyobo, DuPont, Henkel, Panasonic, Taiyo, Cemedine, and so on)
  • 4.3. Performance of stretchable conductive inks
  • 4.4. Evolution and improvements in performance of stretchable conductive inks
  • 4.5. The role of particle size and resin in stretchable inks
  • 4.6. The role of pattern design in stretchable conductive inks
  • 4.7. Washability for stretchable conductive inks
  • 4.8. Encapsulation choice for stretchable inks
  • 4.9. The role of the encapsulant in supressing resistivity changes
  • 4.10. The role of a common substrate for stretchable inks in e-textiles
  • 4.11. Graphene-based stretchable conductive inks
  • 4.12. Graphene heaters in electronic textiles
  • 4.13. Examples of stretchable conductive inks in e-textiles
  • 4.14. Examples of e-textile sports products made using conductive yarns
  • 4.15. PEDOT-impregnated fabric for e-textiles
  • 4.16. CNT heaters for photovoltaic defrosting

5. IN-MOLD CONDUCTIVE INKS

  • 5.1. In-mold electronics: processes and requirements
  • 5.2. Stretchable conductive inks for in-mold electronics
  • 5.3. In-mold electronics: a multi-step process
  • 5.4. Target applications for in-mould electronics
  • 5.5. In-mold conductive inks on the market
  • 5.6. Product examples using in-mold conductive inks
  • 5.7. Printed and thermoformed overhead console

6. STRETCHABLE AND IN-MOLD TRANSPARENT CONDUCTIVE FILM

  • 6.1. Carbon nanotube transparent conductive films: performance of commercial films on the market
  • 6.2. Stretchable carbon nanotube transparent conducting films
  • 6.3. Product examples of carbon nanotube in-mold transparent conductive films
  • 6.4. PEDOT transparent conductive films
  • 6.5. Product examples of in-mold and stretchable PEDOT:PSS transparent conductive films
  • 6.6. Metal mesh transparent conductive films: operating principles and characteristics
  • 6.7. Methods of making metal mesh transparent conductive films: hybrid printing and silver halide patterning
  • 6.8. Methods of making metal mesh transparent conductive films: direct printing and embossing
  • 6.9. Methods of making metal mesh transparent conductive films: photolithography
  • 6.10. In-mold and stretchable metal mesh transparent conductive films
  • 6.11. Stretchable silver nanowire transparent conductive films
  • 6.12. Other in-mold transparent conductive film technologies

7. SUBSTRATES FOR STRETCHABLE ELECTRONICS

  • 7.1. Substrate choice for stretchable electronics
  • 7.2. Panasonic's stretchable insulating resin film with electronic circuits

8. STRETCHABLE SENSORS

  • 8.1. Introduction
  • 8.2. High-strain sensors (capacitive)
  • 8.3. Use of dielectric electroactive polymers (EAPs)
  • 8.4. Players with EAPs
    • 8.4.1. Parker Hannifin
    • 8.4.2. Stretchsense
    • 8.4.3. Bando Chemical
  • 8.5. Other force sensors (capacitive & resistive)
  • 8.6. Force sensor examples:
    • 8.6.1. Polymatech
    • 8.6.2. Sensing Tex
    • 8.6.3. Vista Medical
    • 8.6.4. InnovationLab
    • 8.6.5. Tacterion
    • 8.6.6. Yamaha and Kureha
    • 8.6.7. BeBop Sensors
  • 8.7. Stretchability within skin patch sensors
  • 8.8. Example: Stretchability in chemical sensors
  • 8.9. Example: Stretchability in body-worn electrodes
  • 8.10. Academic examples:
    • 8.10.1. UNIST, Korea
    • 8.10.2. Stanford University
    • 8.10.3. Bio-integrated electronics for cardiac therapy
    • 8.10.4. Instrumented surgical catheters using electronics on balloons
    • 8.10.5. Chinese Academy of Sciences

9. THERMOFORMED POLYMERIC ACTUATOR

  • 9.1. Thermoformed polymeric actuator?

10. ENERGY STORAGE: STRETCHABLE BATTERIES AND SUPERCAPACITORS

  • 10.1. Realization of batteries' mechanical properties
  • 10.2. Material-derived stretchability
  • 10.3. Comparison between flexible and traditional Li-ion batteries
  • 10.4. Device-design-derived stretchability
  • 10.5. Cable-type battery developed by LG Chem
  • 10.6. Electrode design & architecture: important for different applications
  • 10.7. Large-area multi-stacked textile battery for flexible and rollable applications
  • 10.8. Stretchable lithium-ion battery - use spring-like lines
  • 10.9. Foldable kirigami lithium-ion battery developed by Arizona State University
  • 10.10. Fibre-shaped lithium-ion battery that can be woven into electronic textiles
  • 10.11. Fibre-shaped lithium-ion battery that can be woven into electronic textiles (continued)
  • 10.12. Stretchable Supercapacitors
  • 10.13. Stretchable energy harvesting
  • 10.14. Stretchable capacitive energy harvesting upto 1 kW?
  • 10.15. Stretchable triboelectric energy harvesting
  • 10.16. Piezoelectric nano-generators

11. STRETCHABLE OR EXTREMELY FLEXIBLE CIRCUITS BOARDS

  • 11.1. Stretchable or extremely flexible circuit boards (Reebok)
  • 11.2. Examples of thin and flexible PCBs in wearable and display applications
  • 11.3. Examples of thin and flexible PCBs in various applications
  • 11.4. Printed pliable and stretchable circuit boards
  • 11.5. Stretchable meandering interconnects
  • 11.6. Stretchable printed circuits boards
  • 11.7. Examples of fully circuits on stretchable PCBs
  • 11.8. Stretchable Electronics from Fraunhofer IZM
  • 11.9. Stretchable actually-printed electronic circuits/systems
  • 11.10. Island approach to high-performance stretchable electronics
  • 11.11. Examples

12. STRETCHABLE DISPLAYS

  • 12.1. Stretchable displays
  • 12.2. Hyper-stretchable HLEC display
  • 12.3. Stretchable electrophoretic display

13. STRETCHABLE TRANSISTORS

  • 13.1. Stretchable thin film transistors
  • 13.2. Crystalline stretchable high-performance circuits
  • 13.3. Examples of crystalline stretchable high-performance circuits
  • 13.4. Latest progress with electronic skin
  • 13.5. Artificial skin sensors based on stretchable silicon
  • 13.6. Stretchable LED lighting arrays
  • 13.7. Ultra-thin flexible silicon chips
  • 13.8. Ultra thin silicon wafers: top-down thinning
  • 13.9. Ultra thin silicon wafers: Silicon-on-Insulator
  • 13.10. Ultra thin silicon wafers: ChipFilmTM approach

14. MARKETS

  • 14.1. Key markets for stretchable electronics
  • 14.2. Comparison by product type
  • 14.3. Skin patches
  • 14.4. Apparel
  • 14.5. Other textile applications
  • 14.6. Medical devices
  • 14.7. Consumer electronic devices
  • 14.8. Market pilots with early prototypes
  • 14.9. The EC STELLA project
  • 14.10. Pressure monitoring in an insole
  • 14.11. Compression garments
  • 14.12. Wireless activity monitor

15. FORECASTS

  • 15.1. Stretchable electronics in e-textiles
  • 15.2. Number of products containing stretchable electronics, by market sector (2017-2027)
  • 15.3. Number of products containing stretchable electronics, by product type (2017-2027)
  • 15.4. Sales volumes of stretchable components (2017-2027)
  • 15.5. Revenue from stretchable materials & components, (2017-2027)
  • 15.6. Revenue breakdown: stretchable conductive materials, including inks, textiles & polymers (2017-2027)
  • 15.7. Revenue breakdown: mold inks and TCF (2017-2027)
  • 15.8. Revenue breakdown: stretchable sensors, including dielectric elastomer, resistive displacement, textile & other (2017-2027)
  • 15.9. Revenue breakdown: stretchable energy storage and energy harvesting (2017-2027)
  • 15.10. Revenue breakdown: emerging stretchable components, including actuators, logic and displays (2017-2027)

16. COMPANY PROFILES AND INTERVIEWS

  • 16.1. adidas
  • 16.2. Aiq Smart Clothing
  • 16.3. Bebop Sensors
  • 16.4. Cityzen Sciences
  • 16.5. Directa Plus
  • 16.6. Dupont Advanced Materials
  • 16.7. Eurecat - Cetemmsa
  • 16.8. Footfalls And Heartbeats
  • 16.9. Forster Rohner Ag
  • 16.10. Fujikura Kasei Co., Ltd.
  • 16.11. Henkel
  • 16.12. Henkel - Conductive Adhesives
  • 16.13. Hexoskin
  • 16.14. Infinite Corridor Technology
  • 16.15. Kh Chemicals
  • 16.16. Nagase America Corporation
  • 16.17. Poly-Ink
  • 16.18. Polymatech America Co., Ltd.
  • 16.19. Southwest Nanotechnologies, Inc.
  • 16.20. Stretchsense
  • 16.21. Wearable Life Science
  • 16.22. Xerox Research Centre Of Canada (Xrcc)

17. APPENDIX

  • 17.1. List of 25 universities mentioned in this report
  • 17.2. List of 87 companies mentioned in this report

18. COMPANY INTELLIGENCE BASED ON PRIMARY FIRST-HAND INTERVIEWS

  • 18.1. Agfa
  • 18.2. Alphaclo
  • 18.3. Asahi Kasei
  • 18.4. Ash Chemical
  • 18.5. Bainisha
  • 18.6. Bando Chemical
  • 18.7. Bebop Sensors
  • 18.8. Brewer Science
  • 18.9. Canatu
  • 18.10. Cemedine
  • 18.11. Chasm
  • 18.12. Clothing+
  • 18.13. DuPont
  • 18.14. EMS
  • 18.15. EnFlux
  • 18.16. FEET ME
  • 18.17. Flexeed
  • 18.18. Forster Rohner Textile Innovations
  • 18.19. Fraunhofer IZM
  • 18.20. Fujifilm
  • 18.21. Fujikura Kasei
  • 18.22. Henkel
  • 18.23. Heraeus
  • 18.24. Hexoskin
  • 18.25. Hitachi Chemical
  • 18.26. Holst Centre
  • 18.27. Imperial College London
  • 18.28. Innovation Lab
  • 18.29. Jujo Chemical
  • 18.30. Kureha
  • 18.31. MC10
  • 18.32. Mektec
  • 18.33. Molex
  • 18.34. Nagase
  • 18.35. NC State University
  • 18.36. NRCC
  • 18.37. Ohmatex
  • 18.38. Panasonic
  • 18.39. Parker Hannifin
  • 18.40. Piezotech
  • 18.41. Polymatech
  • 18.42. Sabic
  • 18.43. Satosen
  • 18.44. Sensing Tex
  • 18.45. Seoul National University
  • 18.46. Showa Denko
  • 18.47. Soongsil University
  • 18.48. Stretchsense
  • 18.49. Tacterion
  • 18.50. Tactotek
  • 18.51. Taiyo Ink
  • 18.52. Textronics
  • 18.53. T-Ink
  • 18.54. Toray Industries
  • 18.55. Toyobo
  • 18.56. University of Tokyo
  • 18.57. Vista Medical
  • 18.58. Wearable Life Sciences
  • 18.59. Yamaha
Back to Top