Cover Image
市場調查報告書

軟性電子產品的隔離層的技術,市場,預測

Barrier Layers for Flexible Electronics 2016-2026: Technologies, Markets, Forecasts

出版商 IDTechEx Ltd. 商品編碼 312862
出版日期 內容資訊 英文 114 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
軟性電子產品的隔離層的技術,市場,預測 Barrier Layers for Flexible Electronics 2016-2026: Technologies, Markets, Forecasts
出版日期: 2015年11月12日 內容資訊: 英文 114 Pages
簡介

全球彈性阻隔薄膜市場,預計2026年達到超過8億7500萬美元的規模。

本報告提供軟性電子產品產品對應的隔離層技術的市場詳細分析,到2026年的預測,各種相關技術,主要企業簡介介紹。

第1章 調查範圍

第2章 逐漸到達成熟階段的阻隔技術 - 商業化現況

  • 主要的顯示器製造商趨勢
    • Samsung
    • LG
    • 其他
  • TFE和阻隔貼合加工
  • 利用了軟塑料和軟性玻璃的ML阻隔
  • 單層和多層
  • 軟式電路板的處理
  • 原子層成長法 (ALD) 的現在及未來展望與市場佔有率

第3章 封裝相關簡介

第4章 表面平滑度 - 缺點

  • 表面平滑度相關重要課題
  • 微小缺點
    • 針孔 - 粒子
    • 平滑度/裂縫和傷痕
    • 奈米缺點

第5章 阻隔技術:到目前為止的進步

  • Vitex
  • GE

第6章 阻隔製造工程的進步

第7章 阻隔黏劑

  • DELO
  • tesa
  • 3M
  • Henkel

第8章 主要企業簡介

  • 高分子基板蒸鍍上二價元素和無機層產品的廠商
    • 凸版印刷
    • Vitriflex
    • Holst Centre - TNO
    • 三菱
    • Toray Industries
    • 3M
    • Amcor
    • Tera-Barrier
    • Fujifilm
    • UDC
    • Konica Minolta
    • Samsung
    • Honeywell
    • LG Display
    • Applied Materials
    • Meyer Burger Group
  • 開發高分子薄膜的其他企業
    • Dow Chemical
    • Jindal
  • 軟性玻璃
    • Schott AG
    • Corning
    • Asahi Glass (AGC)
    • Nipon Electric Glass (NEG)
  • 彈性阻隔的ALD技術
    • Lotus
    • Beneq
    • Encapsulix
  • 其他的方法
    • CNM Technologies
    • 3M

第9章 阻隔薄膜技術的有效市場

  • OLED顯示器 - OLED照明
  • 有機薄膜電晶體 (OTFT)
  • 液晶顯示器 - 電泳顯示器
  • 有機太陽能電池 (OPV)
  • CIGS - 非晶硅

第10章 阻隔性能評估技術

  • 鈣測試
  • MOCON
  • Vinci Technologies
  • SEMPA
  • VG Scienta
  • 螢光描繪器
  • 黑點分析
  • 氚試驗
  • CEA
  • 3M
  • IMRE
  • 質譜分析法 - 氣體滲透 (WVTR和OTR評估技術的應用的可能性)
  • Kisco Uniglobe

第11章 軟性電子產品用阻隔薄膜的預測

  • 有機電子產品及印刷無機電子產品的潛在重要性
  • 阻隔薄膜市場規模
  • 塑膠基板上的軟性玻璃或無機層

第12章 結論

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

A large opportunity lies in the development of devices in a flexible form factor that can operate without deterioration in performance, allowing them to be more robust, lightweight and versatile in their use. In order for flexible displays and photovoltaics to be commercially successful, they must be robust enough to survive for the necessary time and conditions required of the device. This condition has been a limitation of many flexible, organic or printable electronics. This highlights the fact that beyond flexibility, printability and functionality, one of the most important requirements is encapsulation as many of the materials used in printed or organic electronic displays are chemically sensitive, and will react with many environmental components such as oxygen and moisture.

These materials can be protected using substrates and barriers such as glass and metal, but this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers can be used, but these offer little protection to oxygen and water, resulting in the devices rapidly degrading.

In order to achieve device lifetimes of tens of thousands of hours, water vapor transmission rates (WVTR) must be 10-6 g/m2/day, and oxygen transmission rates (OTR) must be < 10-3 cm3/m2/day. For Organic Photovoltaics, the required WVTR is not as stringent as OLEDs require but is still very high at a level of 10-5 g/m2/day. These transmission rates are several orders of magnitude smaller than what is possible using any conventional plastic substrate, and they can also be several orders of magnitude smaller than what can be measured using common equipment designed for this purpose.

image1

For these (and other) reasons, there has been intense interest in developing transparent barrier materials with much lower permeabilities, a market that will reach over $200 million by 2025.

image2

This report from IDTechEx gives an in-depth review of the needs, emerging solutions and players. It addresses specific topics such as:

  • Companies which are active in the development of high barrier films and their achievements on the field to date. The report covers a range of approaches in encapsulation, such as dyads, deposition of inorganic layers on plastic substrates and flexible glass.
  • Surface smoothness and defects (such as cracks and pinholes) and the effect that these would have on the barrier behavior of the materials studied.
  • Traditional methods of measurement of permeability are reaching the end of their abilities. The MOCON WVTR measurement device, which has been an industry standard, cannot give adequate measurements at the low levels of permeability required for technologies such as organic photovoltaics and OLEDs. Other methods of measurement and equipment developed are being discussed.
  • Forecasts for displays, lighting and thin film photovoltaics (in terms of market value as well as area of barrier film sold into different verticals), in order to understand the influence that the development of flexible barriers would have at the mass deployment and adoption of these technologies.

For those developing flexible electronics, seeking materials needs and opportunities, this is a must-read report.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. SCOPE

2. BARRIER TECHNOLOGY REACHING MATURITY - COMMERCIALIZATION STATUS

  • 2.1. Trend within major display companies
    • 2.1.1. Samsung
    • 2.1.2. LG
    • 2.1.3. Others
  • 2.2. TFE vs. Barrier Lamination
  • 2.3. ML barrier on Flexible Plastics vs. Flexible Glass.
  • 2.4. Single or multi-layer?
  • 2.5. Flexible substrate handling
  • 2.6. Atomic layer deposition present and future outlook/market share

3. INTRODUCTION TO ENCAPSULATION

4. SURFACE SMOOTHNESS - DEFECTS

  • 4.1. Important considerations of surface smoothness
  • 4.2. Micro Defects
    • 4.2.1. Pinholes - particles
    • 4.2.2. Smoothness / Cracks-Scratches
    • 4.2.3. Nanodefects

5. BARRIER TECHNOLOGIES: PAST DEVELOPMENTS

  • 5.1. Vitex
  • 5.2. GE

6. ADVANCES IN BARRIER MANUFACTURING PROCESSES

7. BARRIER ADHESIVES

  • 7.1. DELO
  • 7.2. tesa
  • 7.3. 3M
  • 7.4. Henkel

8. COMPANY PROFILES

  • 8.1. Deposition of dyads or inorganic layers on polymer substrates
    • 8.1.1. Toppan Printing
    • 8.1.2. Vitriflex
    • 8.1.3. Holst Centre - TNO
    • 8.1.4. Mitsubishi
    • 8.1.5. Toray Industries Inc
    • 8.1.6. 3M
    • 8.1.7. Amcor
    • 8.1.8. Tera-Barrier
    • 8.1.9. Fujifilm
    • 8.1.10. UDC
    • 8.1.11. Konica Minolta
    • 8.1.12. Samsung
    • 8.1.13. Honeywell
    • 8.1.14. LG Display
    • 8.1.15. Applied Materials
    • 8.1.16. Meyer Burger Group
  • 8.2. Other companies developing polymer-based films
    • 8.2.1. Dow Chemical
    • 8.2.2. Jindal
  • 8.3. Flexible glass
    • 8.3.1. Schott AG
    • 8.3.2. Corning
    • 8.3.3. Asahi Glass Company (AGC)
    • 8.3.4. Nippon Electric Glass (NEG)
  • 8.4. ALD deposition for flexible barriers
    • 8.4.1. Lotus
    • 8.4.2. Beneq
    • 8.4.3. Encapsulix
  • 8.5. Other approaches
    • 8.5.1. CNM Technologies
    • 8.5.2. 3M

9. ADDRESSABLE MARKET SEGMENTS FOR BARRIER FILM TECHNOLOGIES

  • 9.1. OLED displays - OLED lighting
  • 9.2. Quantum Dots
  • 9.3. OTFTs
  • 9.4. Liquid Crystal Displays - Electrophoretic Displays
  • 9.5. OPV
  • 9.6. CIGS - amorphous Si

10. BARRIER MEASUREMENTS

  • 10.1. The Calcium Test
  • 10.2. MOCON
  • 10.3. Vinci Technologies
  • 10.4. SEMPA
  • 10.5. VG Scienta
  • 10.6. Fluorescent Tracers
  • 10.7. Black Spot Analysis
  • 10.8. Tritium Test
  • 10.9. CEA
  • 10.10. 3M
  • 10.11. IMRE
  • 10.12. Mass Spectroscopy - gas permeation (WVTR & OTR potential applications)
  • 10.13. Kisco Uniglobe

11. FORECASTS FOR BARRIER FILMS FOR FLEXIBLE ELECTRONICS 2016-2026

  • 11.1. The potential significance of organic and printed inorganic electronics
  • 11.2. Barrier films market size
  • 11.3. Flexible glass or inorganic layers on plastic substrates?

12. CONCLUSIONS

TABLES

  • 3.1. Water vapor and oxygen transmission rates of various materials, comparison to OLED/LCD requirements and the MOCON detection limit
  • 3.2. Requirements of barrier materials
  • 4.1. Oxygen transmission rates of polypropylene with various coatings
  • 8.1. Overview of main performance metrics for some of the most important developers
  • 10.1. Lower detection limits of several barrier performance measurement techniques
  • 11.1. Leading market drivers 2026
  • 11.2. Barrier layer area forecasts 2016-2026 in square meters
  • 11.3. Barrier layer market forecasts 2016-2026 in US$ millions

FIGURES

  • 1.1. Example of flexible OLED displays encapsulated in curved, rigid glass by Samsung and LG
  • 1.2. Universal Display Corporation's flexible encapsulation used in OLED lighting panels
  • 1.3. Flexible solar cell developed by Fraunhofer ISE
  • 2.1. In SID 2014 DIGEST ISSN 0097-966X/14/4501-0322 and SID 2014 DIGEST ISSN 0097-966X/14/4501-0326
  • 2.2. J Webb et al., "Flexible Glass Substrates for Electronic Applications" , Flex2014, Short Course" Design Characteristics and Considerations for Flexible Substrates"
  • 2.3. L.Moro et al. "Barrier Films and Thin Film Encapsulation AMAT Flexible Display Workshop, September 17, 2013
  • 2.4. J. Fahlteich et al., "Ultra-high permeation barriers and functional films for large-area flexible electronics" , LOPE-C 2014
  • 3.1. Schematic diagrams for encapsulated structures a) conventional b) laminated c) deposited in situ
  • 3.2. Scanning electron micrograph image of a barrier film cross section
  • 4.1. Visual defects of a selection of materials with barrier films highlighted through calcium corrosion test. Optical microscope magnification 10x
  • 4.2. SEM pictures of the Atmospheric Plasma Glow Discharge deposited silica-like films on polymer substrates. Left: Film with embedded dust particles . Right: uniform film
  • 4.3. OTR as a function of defect density, the correlation between defect density and the oxygen transmission rate
  • 4.4. SEM image of a pinhole defect formed from a dust particle
  • 4.5. Scanning electron microscope image of ITO coated on parylene/polymer film
  • 4.6. The measurement of OLED's lifetime of SiON/PC/ITO and SiON/parylene/PC/parylene/ITO substrate
  • 5.1. Examples of polymer multi-layer (PML) surface planarization a) OLED cathode separator structure b) high aspect ratio test structure
  • 5.2. Vitex multilayer deposition process
  • 5.3. SEM cross section of Vitex Barix material with four dyads
  • 5.4. Optical transmission of Vitex Barix coating
  • 5.5. Edge seal barrier formation by deposition through shadow masks
  • 5.6. Three dimensional barrier structure. Polymer is shown in red, and oxide (barrier) shown in blue
  • 5.7. Schematic of flexible OLED with hybrid encapsulation
  • 5.8. Schematic of cross section of graded barrier coating and complete barrier film structure
  • 5.9. Transparency of GE's UHB film versus wavelength
  • 6.1. Scanning electron micrograph of a thin hybrid polymer coating on SiOx deposited on a flexible PET film
  • 6.2. OTR values achieved with different POLO multilayers
  • 7.1. Area sealing
  • 7.2. DELO's light curing adhesive solution for electrophoretic displays
  • 7.3. Performance characteristics of DELO's light-curing materials
  • 7.4. 3M adhesive product offering
  • 8.1. Amcor (formerly Alcan) Packaging flexible barrier based on PET and SiOx47
  • 8.2. Electron Beam evaporation of Silicon Oxide
  • 8.3. Tera Barrier Films design and concept
  • 8.4. The layout of the Fujifilm DBD plasma reactor
  • 8.5. Surface morphology of the a) pristine PEN substrate Rq = 1.1±0.1 nm, b) 70 nm thick silica-like film deposited on PEN Rq = 1.1±0.3 nm
  • 8.6. The atmospheric pressure DBD plasma facility for production of ultra-barrier foils at pilot plant scale.
  • 8.7. LG Display hybrid solution
  • 8.8. Design of panel side to improve PCL overflow
  • 8.9. FTIR testing of Silicon Nitride deposited by PE-CVD as a flexible barrier, before and after testing
  • 8.10. Corning flexible glass showcased at SID 2011
  • 8.11. AGC's ultra-thin sheet glass on carrier glass and rolled into a coil
  • 8.12. OLED lighting panel by NEG
  • 8.13. Lithium ion battery combined with an a-Si solar cell
  • 8.14. A stack of alternating Alumina/Aluminum-titanate layers grown into a 350 μm deep by 1 μm wide porous Si membrane
  • 8.15. ALD thin film materials
  • 10.1. 2.25 m m2 area of a 50 nm layer of Ca deposited onto barrier coated PET viewed through the substrate. i. Image after 1632 h of exposure to atmosphere; ii. Image analysis whereby the grey scale of Ca degradation is processed to yie
  • 10.2. A simple set-up for measuring optical transmission of calcium test cells
  • 10.3. MOCON's Aquatran™ Model 138
  • 10.4. MOCON's Aquatran™ schematic
  • 10.5. MOCON's OX-TRAN® Model 2/1039
  • 10.6. Silica induced black spots, letters A & B mark black spots with a centralized black dot (silica particle)
  • 10.7. Black spot formation and growth mechanisms
  • 10.8. General Atomics HTO WVTR testing apparatus
  • 10.9. Measurement Scheme
  • 10.10. WVTR result from a high barrier sample
  • 11.1. Leading market drivers 2026
  • 11.2. Barrier layer area forecasts 2016-2026 in square meters
  • 11.3. Barrier layer market forecasts 2016-2026 in US$ millions
  • 11.4. Corning's Flexible glass with protective tabbing on the edges
  • 12.1. Examples of rigid e-readers by Amazon and Barnes & Noble
  • 12.2. The Wexler flexible e-reader
  • 12.3. Samsung Display's first flexible OLED product, the 5.7" Full-HD AMOLED
  • 12.4. Truly flexible OLED lighting panel developed from LG Chem
Back to Top