Cover Image
市場調查報告書

結構性電子市場 2017年∼2027年:用途·技術·預測

Structural Electronics 2017-2027: Applications, Technologies, Forecasts

出版商 IDTechEx Ltd. 商品編碼 311711
出版日期 內容資訊 英文 174 Pages, 19 Tables, 79 Figures
商品交期: 最快1-2個工作天內
價格
Back to Top
結構性電子市場 2017年∼2027年:用途·技術·預測 Structural Electronics 2017-2027: Applications, Technologies, Forecasts
出版日期: 2016年08月22日 內容資訊: 英文 174 Pages, 19 Tables, 79 Figures
簡介

結構性電子(SE)可說是21世紀的技術開發最重要的成果之一。這個技術是實現讓電腦功能應用在生活的各個層面這個常年的夢想之一大重要要素,同時也是以成熟的方法實現了在所需的場所產生電力這個愛迪生的夢想。SE的代表性應用案例是提供了具有負重性的保護結構之功能的電子/電器零件及回路。這便可以原本的車型取代傳統的汽車車體,同時也可應用在航太宇宙領域及土木領域上。此外SE也可望應用於具備將電器機具及電子儀器氣凝膠化,以充填於汽車及飛機未使用的空間技術及可變形構造的飛機之開發上。

本報告以一般認為今後將應用於各種領域的結構性電子(SE)為焦點,闡明其用途,主要的形態,重要的實行技術等,同時也介紹在技術開發上扮演重要角色的企業簡介。

第1章 摘要整理和結論

  • 簡介
  • SE是什麼
  • 解決重要的問題
  • 主要的優點
  • 各種應用領域的成熟度
  • 目的和優點
  • 現在眾所期待的材料和流程
  • 智慧介面
  • 包含於SE的零組件類型
  • 未來性
  • SE實現的方式
    • 各種的新技術
  • 市場預測
  • 能源採集
  • 無線
  • 耐力量結構的零件
  • GES Aviation
  • 最新趨勢

第2章 SE的用途

  • 航太
  • 汽車
  • 消費品和住宅相關的用途
  • 橋樑和建築物
  • 地面建築物的電子設備
  • 太陽能負載
    • 荷蘭開始嘗試在路上利用太陽能發電
    • Hanergy,Tesla,BYD

第3章 主要形態和實行技術

  • 基礎
  • 詳細的分析
  • 領導技術開發的NASA
  • 塑膠電子產品的初期進步

第4章 智慧介面

  • 說明
  • 電線和電纜的高機能塗料
  • 各種案例
  • 具有電子智慧介面特徵的NASA的開放型線圈陣列
  • American Semiconductor的CLAS系統
  • 重點在飛機上的BAE Systems智慧介面
  • 石墨烯複合材料保護機翼不受冰凍危害
  • 由於複合材料發展而附加的電子功能

第5章 重要的實行技術

  • 智慧材料
    • 比較,用途
    • Fiat發表的未來汽車
  • 印刷電子產品和軟性電子產品
    • 簡介和實例
    • 基本的印刷模組
    • 可彎曲的軟性太陽能電池
    • SE的印刷電子產品
  • 3D列印
    • 新素材
    • 電子功能和電力附加功能
    • 未來
    • 印刷石墨烯電池
  • 噴霧式(SPAY)太陽能電池
  • 舒適薄膜的多階段滴落塗佈
  • Origami zippered tube
  • 全球最小的合成棚架半導體

第6章 結構超級電容器和電池

  • 五花八門形態的結構超級電容器
  • 原理
  • 結構電池和燃料電池
  • 可列印固態鋰離子電池

第7章 建築整合型太陽能發電(BIPV)

  • 歷史
  • 定義和吸引人的理由
  • 創新
  • 現在與未來的選擇比較
  • OPV和DSSC比較
  • BIPV染料敏化太陽能電池(DSSC)
  • CIGS的最大進步
  • 戲劇性改善的可能性
  • 太陽能—雖然很早開始發展,但要到2050年方能成為主流
  • 熱能源儲存設備
  • 融入建築物外牆的白色太陽能面板
  • 世界第一個BIPV水泥門牆的裝設
  • 能源自給自足充氣巨蛋的前導計畫有個成功的開始
  • 水泥傳導太陽能
  • 非毒性廉價的薄膜太陽能電池

第8章 主要企業簡介

  • Boeing(美國)
  • Canatu(芬蘭)
  • Faradair Aerospace (英國)
  • Local Motors(美國)
  • Neotech(德國)
  • Odyssian Technology(美國)
  • Optomec(美國)
  • Paper Battery Co.(美國)
  • Pavegen smart paving(英國)
  • Soligie(美國)
  • TactoTek(芬蘭)
  • T-Ink(美國)

第9章 最新採訪

  • 哈佛大學的Jennifer Lewis教授團隊和Voxel8
  • 超級電容器企業
  • 太陽能電池及OLED企業

IDTECHEX的調查報告

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

A business of tens of billions of dollars within the coming decade

Structural electronics (SE) is one of the most important technological developments of this century. It forms a key part of the dream, formulated decades ago, of computing disappearing into the fabric of society. It also addresses, in a particularly elegant manner, the dream of Edison in 1880 that electricity should be made where it is needed. SE is often biomimetic - it usefully imitates nature in ways not previously feasible. It is a rapidly growing multi-billion dollar business.

Structural electronics involves electronic and/or electrical components and circuits that act as load-bearing, protective structures, replacing dumb structures such as vehicle bodies or conformally placed upon them. It is of huge interest to the aerospace industry which is usually the first adopter, the automotive industry and in civil engineering both with compelling needs but its reach is much broader even than this. Electric cars badly need longer range and more space for the money and, in civil engineering, corrosion of reinforced concrete structures and tighter requirements for all structures, including early warning of problems, are among the market drivers for structural electronics.

The common factor is that both load bearing and smart skin formats occupy only unwanted space. The electronics and electrics effectively have no volume. More speculatively, electronics and electrics injected into unused voids in vehicle bodies, buildings etc., say as aerogel, could also provide this benefit without necessarily being load bearing but possibly providing other benefits such as heat insulation. Some present and future applications of structural electronics are morphing aircraft using shape memory alloys, car with printed organic light emitting diode OLED lighting on outside and inside of roof and printed photovoltaics over the outside generating electricity supercapacitor skin on an electric car replacing the traction battery as energy storage, smart skin as a nervous system for an aircraft and solar boats and aircraft running on sunshine alone. In London, a piezoelectric smart dance floor generates electricity and smart bridges across the world have sensors and more embedded in their concrete, all forms of structural electronics as it is increasingly the way to go.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Introduction
  • 1.2. What is it?
  • 1.3. Tackling urgent problems
  • 1.4. Primary benefits
  • 1.5. Maturity by applicational sector
  • 1.6. Objectives and benefits
  • 1.7. Materials and processes currently favoured
  • 1.8. Smart skin
  • 1.9. Component types being subsumed
  • 1.10. Future proof
  • 1.11. How to make structural electronics
    • 1.11.1. A host of new technologies
  • 1.12. Market forecasts
  • 1.13. Energy harvesting in general
  • 1.14. Structural as wireless
  • 1.15. Components designed for embedding in load-bearing structures.
  • 1.16. GES Aviation
  • 1.17. News in 2016
    • 1.17.1. Bat-inspired design for Micro Air Vehicles
    • 1.17.2. TactoTek awarded grant to mass produce injection molded electronics - June 2016
    • 1.17.3. Ultra thin solar panels could power wearable technology revolution - June 2016

2. APPLICATIONS OF STRUCTURAL ELECTRONICS

  • 2.1. Aerospace
  • 2.2. Cars
    • 2.2.1. BMW Germany and Nanyang TU Singapore
    • 2.2.2. Funding for development of lightweight solar modules on vehicles
  • 2.3. Consumer goods and home appliances
  • 2.4. Bridges and buildings
  • 2.5. Structural electronics on the ground
    • 2.5.1. Generating electricity
    • 2.5.2. Sensing
  • 2.6. Solar Roads
    • 2.6.1. SolaRoad Netherlands
    • 2.6.2. Hanergy, Tesla and BYD

3. KEY FORMATS AND ENABLING TECHNOLOGIES

  • 3.1. Basics
  • 3.2. Detailed analysis
  • 3.3. NASA leading the way
  • 3.4. Early progress at plastic electronic

4. SMART SKIN

  • 4.1. Description
  • 4.2. Wire and cable smart cladding
  • 4.3. Many other examples
    • 4.3.1. Hybrid Piezo Photovoltaic Harvesting
  • 4.4. NASA open coil arrays as electronic smart skin
  • 4.5. American Semiconductor CLAS systems
  • 4.6. BAE Systems UK: smart skin for aircraft then cars and dams
  • 4.7. Graphene composite may keep wings ice-free
  • 4.8. Composites evolve to add electronic functionality
    • 4.8.1. Reasons, achievements, timeline 1940-2030

5. SOME KEY ENABLING TECHNOLOGIES

  • 5.1. Smart materials
    • 5.1.1. Comparisons, uses
    • 5.1.2. Fiat car of the future
  • 5.2. Printed and flexible electronics
    • 5.2.1. Introduction and examples
    • 5.2.2. Basic printed modules
    • 5.2.3. Bendable then conformal photovoltaics
    • 5.2.4. Printed electronics in structural electronics
  • 5.3. 3D printing
    • 5.3.1. New materials
    • 5.3.2. Adding electronic and electrical functions
    • 5.3.3. The future
    • 5.3.4. Printed graphene batteries
  • 5.4. Spray on solar cells
  • 5.5. Multi-step drop-casting of conformal film
  • 5.6. Origami zippered tube
  • 5.7. Smallest synthetic lattice in the world

6. STRUCTURAL SUPERCAPACITORS AND BATTERIES

  • 6.1. Many forms of structural supercapacitor
    • 6.1.1. Queensland UT supercap car body
    • 6.1.2. Vanderbilt University structural supercapacitor
    • 6.1.3. Imperial College London/ Volvo structural supercapacitor for car
  • 6.2. Fundamentals
  • 6.3. Structural batteries and fuel cells
  • 6.4. Printable solid-state Lithium-ion batteries

7. BUILDING INTEGRATED PHOTOVOLTAICS (BIPV)

  • 7.1. History
  • 7.2. Definition and reason for new interest
  • 7.3. Evolution
  • 7.4. Comparison of options now and in future
  • 7.5. Rigid to flexible to conformal and stretchable
  • 7.6. OPV and DSSC compared
    • 7.6.1. Slow rollout
  • 7.7. Dye Sensitised Solar Cells for BIPV
    • 7.7.1. Dye Solar Cell Technology
    • 7.7.2. Sandia Laboratories
    • 7.7.3. Saule, Poland
  • 7.8. Latest CIGS progress
  • 7.9. Huge improvement possible
  • 7.10. Solar - take-off soon; dominance 2050
  • 7.11. Heat energy storage device
  • 7.12. White solar panels vanish into buildings
  • 7.13. World's first BIOPV concrete façade installation
  • 7.14. Successful start of pilot project for energy self-sufficient air dome
  • 7.15. Concrete delivers solar energy
  • 7.16. Non-toxic and cheap thin-film solar cells

8. COMPANY PROFILES

  • 8.1. Boeing, USA
  • 8.2. Canatu, Finland
  • 8.3. Faradair Aerospace UK
  • 8.4. Local Motors, USA
  • 8.5. Neotech, Germany
  • 8.6. Odyssian Technology, USA
  • 8.7. Optomec USA
  • 8.8. Paper Battery Co., USA
  • 8.9. Pavegen smart paving, UK
  • 8.10. Soligie, USA
  • 8.11. TactoTek, Finland
  • 8.12. T-Ink, USA

9. RECENT INTERVIEWS

  • 9.1. Prof Jennifer Lewis' Group at Harvard University and Voxel8
  • 9.2. Supercapacitor company visits in late 2014
    • 9.2.1. DuPont, Nippon ChemiCon
    • 9.2.2. Taiyo Yuden
  • 9.3. Photovoltaics and OLED company visits in late 2014

IDTECHEX RESEARCH REPORTS AND CONSULTING

TABLES

  • 1.1. Global problems in certain applicational sectors
  • 1.2. Benefits and challenges of structural electronics)
  • 1.3. Benefits of structural electronics in different structures
  • 1.4. Application patterns in current materials and processes
  • 1.5. Criteria for a component to be most suitable for subsuming into SE
  • 1.6. Some of the benefits of replacing conventional electronic and electric components and dumb structures with structural electronics by applicational sector most needing them
  • 1.7. Structural electronics market 2017 and 2027 US$ billion globally
  • 1.8. BIPV global market value US$ billions rounded 2016-2027
  • 1.9. Market forecast by component type for 2017-2027 in US $ billions, for printed and potentially printed electronics including organic, inorganic and composites
  • 1.10. IDTechEx WSN forecast 2017-2027 with RTLS for comparison
  • 1.11. Market forecast for fully printed sensors 2017-2027 (in $ million)
  • 1.12. Ex-factory value of EVs, in millions of US dollars, sold globally, 2016-2026, by applicational sector, rounded. Excludes 48V mild hybrids which become electric vehicles in later years by having up to four brief pure electric modes
  • 3.1. Enabling technologies for present and future structural electronics
  • 4.1. Example of demonstrated or in production (in grey) and envisaged (in green) smart skin for inanimate objects and examples of organisations involved. Largest value markets in 2025 in red. Total market will be at the billions of dol
  • 4.2. NASA SansEC open coil arrays as aircraft smart skin compared with metal mesh
  • 4.3. Composites to electronic composites: objectives, achievements, future prospects 1940-2030
  • 5.1. Examples of smart materials and their functions, challenges and potential uses in structural electronics
  • 7.1. BIPV vs traditional PV on buildings
  • 7.2. Examples of developers of TFPV

FIGURES

  • 1.1. Some future applications of structural electronics
  • 1.2. Maturity and sophistication of applications of structural electronics by sector showing strong adoption in yellow, intermediate in green and later adoption in magenta
  • 1.3. Precursors of structural electronics in yellow, transitioning to established technology in green, and speculative dreams in magenta
  • 1.4. Some possible structures of multilayer multifunctional electronic smart skin
  • 1.5. Structural electronics market 2017 globally
  • 1.6. Structural electronics market 2027 globally
  • 1.7. BIPV global market value US$ billions rounded 2016-2027
  • 1.8. Structural electronics market 2017 and 2027 $billion globally, excluding BIPV
  • 1.9. Market forecast by component type for 2017-2027 in US $ billions, for printed and potentially printed electronics including organic, inorganic and composites
  • 1.10. Total WSN market forecast 2017-2027 (in $ million)
  • 1.11. Market forecast for fully printed sensors 2017-2027 (in $ million)
  • 1.12. Maturity of wide variety of energy harvesting technologies and applications
  • 1.13. Unmanned Aerial Vehicle AUV with embedded and printed structural circuitry
  • 1.14. Two examples of new components intended for embedding in load bearing structures
  • 2.1. Some applications and potential applications of structural electronics in aerospace
  • 2.2. One option for stacked patch antenna array in aircraft body
  • 2.3. Smart composite actuator concept
  • 2.4. Slotted Waveguide Antenna Stiffened Structure SWASS
  • 2.5. Strati 3D printed car
  • 2.6. Some applications and potential applications of structural electronics in cars
  • 2.7. Supercapacitor car bodywork replaces traction batteries experimentally
  • 2.8. Supercapacitor car trunk lid, experimental
  • 2.9. Printed OLED lighting on and under car roof plus printed organic photovoltaics on the roof all as integrated structural electronics in a Daimler concept car
  • 2.10. Swedish company Midsummer are developing lightweight solar modules for vehicles
  • 2.11. Some applications and potential applications of structural electronics in consumer goods and home appliances
  • 2.12. Some applications and potential applications of structural electronics in bridges and buildings
  • 2.13. Optimising setting of concrete using embedded sensors and sensors monitoring seismic damage and deterioration
  • 2.14. Structural photovoltaics
  • 2.15. SolaRoad pilot road opened in late 2014 in the Netherlands
  • 2.16. Hanergy EIV car launch mid 2016.
  • 3.1. Key formats and some key enabling technologies for structural electronics
  • 3.2. Some of the enabling technologies for structural electronics and relationships between them
  • 3.3. European Commission project EARPA integrating electrics and electronics with structure of an electric vehicle
  • 3.4. NASA nanotechnology roadmaps
  • 3.5. NASA nanomaterials roadmap
  • 3.6. NASA nanosensor roadmap
  • 3.7. NASA biomimetics and bio-inspired systems
  • 3.8. Project status at plastic electronic for different application segments
  • 4.1. Supercapacitor smart skin on copper conducting wire or cable
  • 4.2. HPP structure
  • 4.3. HPP envisaged application in buildings
  • 4.4. Envisaged marine application of HPP
  • 4.5. NASA Sans EC open coil arrays (a) placed on aircraft (b) as array of laminar open circuit coils and (c) the shape of a typical coil used
  • 4.6. American Semiconductor CLAS for aircraft
  • 4.7. Flex ICs
  • 4.8. Conformally attached FleX IC prototype with direct write flexible interconnects
  • 4.9. Prototype smart skin
  • 4.10. FleX transparent, thin, flexible CMOS
  • 4.11. Envisioned production process for smart skin: conductor, insulator, simple display, power and flexibly mounted chips
  • 4.12. Planned UAV trial of FleX smart skin
  • 5.1. Fiat car of the future
  • 5.2. Printed electronics power module developed under the European Community FACESS project
  • 5.3. Types of early win and longer term project involving printed electronics 1995-2025
  • 5.4. The Swedish Royal Institute of Technology (KTH) at the Shell Eco Marathon competition 2014 and other earlier solar cars
  • 5.5. Cosmetic 3DP on structure
  • 5.6. Harvard 3DP battery
  • 5.7. Hype curve of 3DP applications
  • 5.8. Origami zippered tube
  • 6.1. PRISS (PRIntable Solid-State battery),
  • 7.1. Examples of BIPV
  • 7.2. Assessment of organic photovoltaics and alternatives for buildings.
  • 7.3. DSSC niche product concepts
  • 7.4. Heliatek solar film
  • 7.5. A building material that simultaneously functions as a photovoltaic cell
  • 8.1. Spectrolab roadmap for multilayer cells
  • 8.2. Faradair BEHA
  • 8.3. Odyssian technology that structurally integrates flex circuits and/or printed polymer circuits into conventional or composite structure often including conventional PCBs.
  • 8.4. Example of military structural health monitoring
  • 8.5. Envisaged applications
  • 8.6. Technology and process
  • 8.7. Capacitive touch controls and animated LEDs incorporated in plastic product cover.
  • 8.8. Printed circuits, capacitive buttons and touch screen behind a device cover
  • 9.1. Taiyo Yuden comparison of its symmetrical electrochemical double layer capacitors
  • 9.2. Solar boats in Taiwan
  • 9.3. Kaneka structural photovoltaics
  • 9.4. Kaneka OLED lighting panels showing transparency when not switched on - you see the wood etc on which they are mounted
  • 9.5. Kaneka OLED panels switched on under glasses
Back to Top