Cover Image
市場調查報告書

OLED顯示器市場預測2016年∼2026年:塑膠顯示器和軟性顯示器的崛起

OLED Display Forecasts 2016-2026: The Rise of Plastic and Flexible Displays

出版商 IDTechEx Ltd. 商品編碼 308904
出版日期 內容資訊 英文 279 Pages, 19 Tables, 213 Figures
商品交期: 最快1-2個工作天內
價格
Back to Top
OLED顯示器市場預測2016年∼2026年:塑膠顯示器和軟性顯示器的崛起 OLED Display Forecasts 2016-2026: The Rise of Plastic and Flexible Displays
出版日期: 2016年05月19日 內容資訊: 英文 279 Pages, 19 Tables, 213 Figures
簡介

近幾年,OLED (有機發光二極體) 技術,在顯示器市場中大幅伸展佔有率。現在,OLED顯示器,在行動電話、平板電腦、電視、穿戴式設備上大量生產。全球OLED顯示器市場,預計2026年達到570億美元。還有塑膠/彈性AMOLED (主動式矩陣式有機發光二極體) 顯示器預計2020年達到180億美元的市場規模。

本調查本報告以塑膠顯示器和軟性顯示器關注的OLED的市場為焦點,提供行動電話和平板電腦,筆記本型電腦,電視,汽車和航太,穿戴式設備等各種用途領域的市場前景,主要各製造商的OLED策略,印刷OLED顯示器技術的進步等觀察、未來預測。

第1章 摘要整理

第2章 簡介

第3章 各顯示器製造公司的OLED策略

  • Samsung Display (SDC)
  • LG Display (LGD)
  • BOE
  • AU Optronics (AUO)
  • Shenzhen China Star Optoelectronics Technology (CSOT)
  • Visionox
  • SONY
  • Panasonic
  • JAPAN DISPLAY (JDI)
  • Sharp Corp
  • 東芝

第4章 印刷OLED顯示器的進步

  • 印刷TFT背板
  • 可印刷OLED材料的供給擴大
  • 噴墨法製造的OLED

第5章 OLED顯示器的市場區隔

  • 行動裝置的顯示器
  • 電腦:平板電腦和筆記型電腦
  • 電視和螢幕
  • 穿戴式設備
  • 汽車和航太
  • 產業用及商務用的顯示器
  • 微顯示器
  • 其他

第6章 市場預測

  • OLED顯示器技術定義
  • 各種市場銷售額預測
  • 各種市場出貨量預測
  • 各種術的銷售額預測
  • 各種各技術的出貨量預測
  • 各市場區隔的詳細預測
    • 行動電話
    • 平板電腦/筆記本型PC
    • 電視和螢幕
    • 穿戴式設備
    • 汽車和航太
    • 產業用/商務用顯示器
    • 微顯示器
    • 其他
  • 追加資料

第7章 軟式電路板

  • 要求條件
  • 各材料類型的基準
  • 主要企業簡介
    • DuPont Teijin Films
    • ITRI
    • Samsung Ube Materials
    • Kolon Industries
    • Corning
    • AGCAsahi Glass

第8章 背板技術

  • 主動式矩陣背板的畫素電路
  • 半導體材料
  • 被動式矩陣OLED (PMOLED)
  • 主要企業簡介
    • Plastic Logic
    • CBrite
    • 亞利桑那州立大學
    • SmartKem
    • Polyera
    • Flexink
    • Merck (EMD Chemicals)
    • BASF

第9章 前板:OLED的層級

  • 各層級所扮演的角色
  • TADF
  • 陰影遮罩和白OLED
  • 印刷OELD的畫素結構
  • 輔助畫素設計
  • 供給企業一覽
  • 中國的供給企業
    • Beijing Aglaia Technology Development Co
    • Borun New Material Technology Co. (Borun Chemical Co)
    • Jilin Optical & Electronic Materials Co
    • Visionox
    • Xi'an Ruilian Modern Electronic Chemicals Co., Ltd
  • 歐洲的供給企業
    • Heraeus
    • Merck
    • Novaled
    • Cynora
  • 日本的供給企業
    • 保土谷化學工業
    • Idemitsu Kosan Co., Ltd.
    • JNC (舊CHISSO)
    • Konica Minolta
    • 球桿力士
    • 三菱化學
    • 三井化學
    • 新日鐵住金化學
    • 日產化學
    • 住友化學
    • Toray Industries
  • 韓國的供給企業
    • Cheil Industries
    • Daejoo Electronic Materials Company
    • Doosan Corporation ElectroMaterials
    • Dow Chemical
    • Duksan Hi-Metal
    • LG Chem
    • Sun Fine Chemical Co (SFC)
  • 台灣的供給企業
    • E-Ray Optoelectronics
    • Luminescence Technology Co.
    • Nichem Fine Technology
  • 美國的供給企業
    • DuPont
    • Plextronics (Solvay)
    • Universal Display Corporation

第10章 氧化銦錫 (ITO) 替換的材料:透明導電體

  • 觸控面板用開發的各種顯示器使用的材料
  • 各種可利用的技術
  • 供給企業的一覽
  • 主要企業簡介
    • Blue Nano
    • Cambrios
    • CNano
    • Canatu
    • NanoIntegris
    • Heraeus
    • Agfa

第11章 阻隔薄膜技術

  • 必須封裝的理由
  • 現在可利用的各種的阻隔技術
  • Vitex Technology (Samsung)
  • 軟性玻璃
  • 原子層沉積法 (ALD)

IDTECHEX的調查報告和諮詢

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

The market for plastic and flexible AMOLED displays will grow to $18bn by 2020

OLED technology has recently gained significant market share in the display market. OLED displays are now mass produced for mobile phones, tablets, TVs, and wearables. IDTechEx forecasts the market for OLED displays will reach nearly $16bn this year and will grow to $57bn in 2026.

The latest evolution is plastic and flexible displays. Compared to conventional glass-based displays, plastic AMOLED panels are much thinner and lighter, enabling either slimmer devices or bigger batteries. Future flexible displays will also make foldable mobile devices a reality. The two main segments are currently smart phones and wearable devices such as smart watches. However, as the technology matures it will be possible to use those displays in other applications, such as automotive displays.

Figure 1:
Plastic and flexible OLED display revenue forecast in
four market segments

                     Source: IDTechEx

Both Samsung Display and LG Display have recently announced significant investment to expand their production capacity. IDTechEx has upgraded the forecast and now expects plastic and flexible displays to generate a $18bn market by 2020.

The rise of plastic and flexible displays will be accompanied by a shift from glass substrates to plastic substrates such as polyimide. However, glass-based displays will remain an important technology, especially in the TV segment where scale-up and cost reduction are still the main challenges.

New 4K OLED TVs were recently launched by LG and Panasonic to critical acclaim. However, some TV manufacturers are hedging their bets by investing in LCD panels enhanced with quantum dots. These so-called "quantum dot LCD" TVs will be positioned as a cheaper upgrade from existing sets. IDTechEx expects that new production technologies will make OLED more competitive, allowing the market for OLED TV panels to grow at 26% CAGR over the next decade.

New applications in wearable devices such as augmented reality (AR) and virtual reality (VR) are also coming to market and provide new opportunities for suppliers of OLED displays. Sony, Oculus, and HTC have already announced new VR headsets based on AMOLED technologies. For AR glasses, OLED microdisplays are a major contender against existing LCoS (liquid crystal on silicon) technology.

Based on a deep understanding of the technology roadmap and the existing bottlenecks, IDTechEx has forecasted the OLED display market in eight segments:

  • Mobile phone displays
  • Tablet and notebook displays
  • TV panels
  • Automotive and aerospace
  • Wearable electronics
  • Industrial and professional displays
  • Microdisplays
  • Other applications

IDTechEx has been tracking printed, organic, and flexible electronics since 2001. This report gives a unique perspective on the OLED display market, leveraging the full expertise of our analysts and the direct interviews with companies in the value chain.

The report will be useful to:

  • Players in the OLED value chain who need detailed market forecasts
  • End users who wish to incorporate plastic and flexible displays in their products
  • Investors who want a complete overview of the OLED display market

Key features of this report

  • Executive Summary available as a separate 36 slide presentation (PDF format)
  • Detailed 10-year forecasts by market segment
  • Detailed 10-year forecasts by display type (AMOLED rigid glass, AMOLED rigid plastic, AMOLED flexible, PMOLED, segmented, and microdisplays)
  • The current status on printed OLED displays
  • Technologies and players in the OLED value chain (substrate, backplane, transparent conductor, barrier film)
  • Company profiles based on direct interviews

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

2. INTRODUCTION

  • 2.1. An industry transitioning from LCD manufacturing
  • 2.2. Why flexible displays?
    • 2.2.1. The need to differentiate
    • 2.2.2. Enabling future form factors
  • 2.3. Technology Roadmap: components needed for a flexible OLED display
  • 2.4. Technology roadmap: OLED televisions

3. OLED STRATEGIES BY DISPLAY MANUFACTURERS

  • 3.1. Samsung Display (SDC)
    • 3.1.1. Novaled acquisition
    • 3.1.2. Investment in production capacity
    • 3.1.3. Increase in display size
    • 3.1.4. The dilemma in TV
  • 3.2. LG Display (LGD)
    • 3.2.1. Focus on TV
    • 3.2.2. Plastic OLED
    • 3.2.3. Investment on both fronts
  • 3.3. BOE
  • 3.4. AU Optronics (AUO)
  • 3.5. Shenzhen China Star Optoelectronics Technology (CSOT)
  • 3.6. Visionox
  • 3.7. Sony
  • 3.8. Panasonic
  • 3.9. Japan Display Inc (JDI)
  • 3.10. JOLED
  • 3.11. Foxconn - Sharp
  • 3.12. Toshiba

4. PROGRESS IN PRINTED OLED DISPLAYS

  • 4.1. Printed TFT backplanes
    • 4.1.1. Why print TFTs?
    • 4.1.2. Japan leading the R&D in printed TFTs
  • 4.2. Growing availability of printable OLED materials
    • 4.2.1. Polymer OLED from Cambridge Display Technology (Sumitomo)
    • 4.2.2. Solution processed small molecules
  • 4.3. Inkjet Printed OLED
    • 4.3.1. Printing vs. vapour deposition
    • 4.3.2. Panasonic
    • 4.3.3. Sony
    • 4.3.4. BOE
    • 4.3.5. AU Optronics
    • 4.3.6. Kateeva

5. MARKET SEGMENTATION FOR OLED DISPLAYS

  • 5.1. Mobile displays
  • 5.2. Computers: Tablets and Notebooks
  • 5.3. TV and monitors
    • 5.3.1. LGD taking the lead
    • 5.3.2. Competing technologies
  • 5.4. Wearable electronics
  • 5.5. Automotive and Aerospace
  • 5.6. Industrial and professional displays
  • 5.7. Microdisplays
  • 5.8. Others

6. MARKET FORECAST

  • 6.1. Definition of OLED display technologies
    • 6.1.1. AMOLED rigid glass
    • 6.1.2. AMOLED rigid plastic
    • 6.1.3. AMOLED flexible
    • 6.1.4. PMOLED
    • 6.1.5. Segmented
    • 6.1.6. Microdisplays
  • 6.2. Revenue forecast by market segment
  • 6.3. Shipment forecast by market segment
  • 6.4. Revenue forecast by technology
  • 6.5. Shipment forecast by technology
  • 6.6. Details by market segment
    • 6.6.1. Mobile phones
    • 6.6.2. Tablets/Notebooks
    • 6.6.3. TV and monitors
    • 6.6.4. Wearable devices
    • 6.6.5. Automotive and aerospace
    • 6.6.6. Industrial/Professional displays
    • 6.6.7. Microdisplays
    • 6.6.8. Others
  • 6.7. Additional figures
    • 6.7.1. Compound annual growth rate
    • 6.7.2. Market share for each segment
    • 6.7.3. Revenue forecast for Plastic and Flexible OLED displays

7. FLEXIBLE SUBSTRATES

  • 7.1. Requirements
    • 7.1.1. Key challenges of flexible substrates
    • 7.1.2. Process temperature by substrate type
  • 7.2. Benchmarking by material type
  • 7.3. Company profiles
    • 7.3.1. DuPont Teijin Films
    • 7.3.2. ITRI
    • 7.3.3. Samsung Ube Materials
    • 7.3.4. Kolon Industries
    • 7.3.5. Corning
    • 7.3.6. AGC Asahi Glass

8. BACKPLANE TECHNOLOGY

  • 8.1. Pixel circuit in Active Matrix backplanes
    • 8.1.1. OLED displays are current driven
    • 8.1.2. Amorphyx: replacing TFT with diodes
  • 8.2. Semiconductor materials
    • 8.2.1. Benchmarking of the main technologies
    • 8.2.2. Organic TFT
    • 8.2.3. Metal oxide TFT
  • 8.3. Passive matrix OLED (PMOLED)
  • 8.4. Company profiles
    • 8.4.1. FlexEnable (formerly Plastic Logic)
    • 8.4.2. CBrite
    • 8.4.3. Arizona State University
    • 8.4.4. SmartKem
    • 8.4.5. Polyera
    • 8.4.6. Flexink
    • 8.4.7. Merck (EMD Chemicals)
    • 8.4.8. BASF

9. FRONTPLANE: OLED LAYERS

  • 9.1. Role of each layer
  • 9.2. TADF
  • 9.3. Shadow mask vs. White OLED
    • 9.3.1. Fine metal mask (FMM)
    • 9.3.2. White OLED approach
    • 9.3.3. Yellow emitter with color filters
  • 9.4. Pixel architecture for printed OLED
  • 9.5. Subpixel layouts
  • 9.6. Table of suppliers
  • 9.7. Suppliers in China
    • 9.7.1. Beijing Aglaia Technology Development Co
    • 9.7.2. Borun New Material Technology Co. (Borun Chemical Co)
    • 9.7.3. Jilin Optical & Electronic Materials Co
    • 9.7.4. Visionox
    • 9.7.5. Xi'an Ruilian Modern Electronic Chemicals Co., Ltd
  • 9.8. Suppliers in Europe
    • 9.8.1. Heraeus
    • 9.8.2. Merck
    • 9.8.3. Novaled
    • 9.8.4. Cynora
  • 9.9. Suppliers in Japan
    • 9.9.1. Hodogaya
    • 9.9.2. Idemitsu Kosan
    • 9.9.3. JNC (ex Chisso)
    • 9.9.4. Konica Minolta
    • 9.9.5. Kyulux
    • 9.9.6. Mitsubishi Chemical Corporation
    • 9.9.7. Mitsui Chemicals
    • 9.9.8. Nippon Steel & Sumikin Chemical
    • 9.9.9. Nissan Chemical Industries
    • 9.9.10. Sumitomo Chemical
    • 9.9.11. Toray Industries
  • 9.10. Suppliers in Korea
    • 9.10.1. Cheil Industries
    • 9.10.2. Daejoo Electronic Materials Company
    • 9.10.3. Doosan Corporation Electro-Materials
    • 9.10.4. Dow Chemical
    • 9.10.5. Duksan Hi-Metal
    • 9.10.6. LG Chem
    • 9.10.7. Sun Fine Chemical Co (SFC)
  • 9.11. Suppliers in Taiwan
    • 9.11.1. E-Ray Optoelectronics
    • 9.11.2. Luminescence Technology Co.
    • 9.11.3. Nichem Fine Technology
  • 9.12. Suppliers in USA
    • 9.12.1. DuPont
    • 9.12.2. Plextronics (Solvay)
    • 9.12.3. Universal Display Corporation

10. ITO REPLACEMENT: TRANSPARENT CONDUCTORS

  • 10.1. Developed for touch, used in displays
  • 10.2. A range of technologies available
  • 10.3. Table of suppliers
  • 10.4. Company profiles
    • 10.4.1. Blue Nano
    • 10.4.2. Cambrios
    • 10.4.3. CNano
    • 10.4.4. Canatu
    • 10.4.5. NanoIntegris
    • 10.4.6. Heraeus
    • 10.4.7. Agfa

11. BARRIER FILM TECHNOLOGY

  • 11.1. Why encapsulation is needed
    • 11.1.1. Organic semiconductors are sensitive to air and moisture
    • 11.1.2. Requirements for barrier films
    • 11.1.3. Different ways barriers are implemented
    • 11.1.4. Dyad concept
  • 11.2. Different barrier technologies available
    • 11.2.1. Pros and cons of each approach
    • 11.2.2. List of technology suppliers
  • 11.3. Vitex Technology (Samsung)
  • 11.4. Flexible glass
  • 11.5. Atomic Layer Deposition (ALD)
    • 11.5.1. Beneq
    • 11.5.2. Encapsulix

IDTECHEX RESEARCH REPORTS AND CONSULTING

TABLES

  • 2.1. Technology roadmap for flexible OLED displays
  • 2.2. Technology roadmap for OLED televisions
  • 3.1. LGD flexible OLED panel
  • 3.2. Display production in mainland China
  • 5.1. Mobile phone brands with Samsung Display OLED panels in 2014
  • 6.1. OLED display market size by segments ($ million)
  • 6.2. OLED display market size by segments (M unit)
  • 6.3. OLED display market by display type ($ million)
  • 6.4. OLED display market by display type (M unit)
  • 8.1. Comparison of OTFT against other technologies
  • 8.2. Various flexible display demonstrators made with OTFT
  • 8.3. Current status of IGZO vs. a-Si and LTPS
  • 8.4. Various flexible display demonstrators made with oxide TFT
  • 9.1. Suppliers of OLED materials
  • 9.2. Material sales
  • 10.1. Table of suppliers
  • 11.1. Water vapor and oxygen transmission rates of various materials
  • 11.2. Requirements of barrier materials
  • 11.3. Dyads or inorganic layers on polymer substrates: main performance metrics for some of the most important developers

FIGURES

  • 2.1. Display value chain
  • 2.2. Difference between OLED and LCD
  • 2.3. Evolution of TFT-LCD glass substrate size
  • 2.4. Glass substrate sizes by generation
  • 2.5. Sizes from Gen 1 to Gen 10
  • 2.6. Multiple displays per glass sheet
  • 2.7. Example of increasing TV sizes
  • 2.8. Selling points of flexible displays
  • 2.9. Flexible displays will fill the gap which arises from the demand for more portable devices but larger screen sizes
  • 2.10. Possible evolution of form factors for mobile phones
  • 2.11. Possible evolution of form factors for tablets
  • 2.12. Basic stack structure of AMLCD and AMOLED
  • 2.13. Roadmap towards flexible AMOLED displays and flexible electronics devices
  • 3.1. Samsung AMOLED production
  • 3.2. Expected revenue growth for Samsung Display
  • 3.3. Choice of TFT technology for LCD and OLED
  • 3.4. Samsung's introduction to Youm
  • 3.5. Samsung's involvement in the key technologies for flexible OLED
  • 3.6. Samsung CapEx plan
  • 3.7. 55" and 77" curved OLED TV by LG
  • 3.8. WRGB OLED structure from LG
  • 3.9. Plastic OLED display at SID 2013
  • 3.10. Face sealing encapsulation
  • 3.11. Laser assisted release
  • 3.12. Circular plastic AMOLED
  • 3.13. Flexible display roadmap by LG Display
  • 3.14. AMOLED development from 2011 to 2013
  • 3.15. AMOLED technology for TV application
  • 3.16. BOE backplane technology development
  • 3.17. Flexible display rolled at 20mm curvature radius
  • 3.18. Structure of the flexible OLED display
  • 3.19. AUO OLED history
  • 3.20. Flexible 4.3" display demonstrated in 2010
  • 3.21. Flexible 5" AMOLED display presented at SID2014
  • 3.22. Shenzhen CSOT AMOLED roadmap
  • 3.23. Flexible PMOLED backplane
  • 3.24. Structure of the flexible PMOLED panel
  • 3.25. Visionox AMOLED project
  • 3.26. 3.5 inch LTPS flexible full-color AMOLED
  • 3.27. Super Top Emission
  • 3.28. Rollable 4.1" display presented in 2010
  • 3.29. Panasonic 4K 56" OLED TV at CES 2013
  • 3.30. Structure of a 4" OLED displays made on a PEN substrate
  • 3.31. JDI strategy
  • 3.32. Foldable display by SEL
  • 3.33. Sharp's TFT technologies
  • 3.34. Flexible display with IGZO backplane presented at SID 2013
  • 3.35. Flexible 3.4" QHD OLED display by Sharp
  • 3.36. Sharp and Pixtronic MEMS
  • 3.37. Comparison between IGZO with a-Si and poly-Si
  • 3.38. Flexible AMOLED panel fabrication
  • 3.39. Photograph of the 10.2" flexible OLED display
  • 4.1. Traditional vs. printing methods
  • 4.2. Many printable semiconductor materials
  • 4.3. Device structure
  • 4.4. Electrical properties of the printed TFTs
  • 4.5. Fully printed, organic, thin-film transistor array
  • 4.6. Organic TFT based on ambient conductive metal nanoparticles
  • 4.7. Formation of organic semiconductor layer
  • 4.8. Transfer characteristics of printed OTFT
  • 4.9. Screen printed array
  • 4.10. Device structure with floating gate
  • 4.11. Offset based printing method
  • 4.12. Devices demonstrated by Toppan Printing
  • 4.13. Electrophoretic display with printed TFT array
  • 4.14. Electrophoretic display made with a printed TFT backplane at 200 ppi
  • 4.15. Inkjet printing process
  • 4.16. Photograph of the printed oxide TFTs on glass substrate
  • 4.17. PLED performance data
  • 4.18. Lifetime and efficiency
  • 4.19. Printing process
  • 4.20. UDC printable OLED materials
  • 4.21. Printing seen as an area of future growth (presented in June 2014)
  • 4.22. Characteristics of OLED production technologies
  • 4.23. Development of OLED printing
  • 4.24. Comparison of OLED printing versus OLED vapor deposition
  • 4.25. Panasonic 4K 56" OLED TV at CES 2013
  • 4.26. Sony 3" printed OLED demonstrator at SID 2011
  • 4.27. Printing process in 3 steps
  • 4.28. Structure of the hybrid printed OLED structure
  • 4.29. Pixel structure of the 17" printed OLED display
  • 4.30. Development of EL technology 1
  • 4.31. Development of EL technology 2
  • 4.32. Device structure
  • 4.33. Picture of the 65" printed TV
  • 4.34. Inkjet printing equipment designed for OLED display production
  • 4.35. Kateeva YIELDjet
  • 4.36. Improving the T95 lifetime
  • 5.1. S-Stripe pixel layout on the Motorola Moto X (left) and the Samsung Galaxy Note 2 (right)
  • 5.2. Samsung Galaxy Round and LG G Flex
  • 5.3. Concept of foldable phone display
  • 5.4. Concept of a rollable phone display
  • 5.5. Samsung Galaxy Tab S
  • 5.6. The world's first OLED tablet computer
  • 5.7. Lenovo X1 Yoga with AMOLED panel
  • 5.8. 55" and 77" curved OLED TV by LG
  • 5.9. Comparison with a conventional TV
  • 5.10. 55-in Crystal LED prototype
  • 5.11. Gear Fit smartwatch with 1.84" Curved Super AMOLED (432x128)
  • 5.12. Gear Fit curved display
  • 5.13. Samsung Gear S and LG G Watch R
  • 5.14. Asus ZenWatch with a 1.63" AMOLED display
  • 5.15. 1.3" PMOLED in a smartwatch
  • 5.16. LG Lifeband Touch with monochrome display
  • 5.17. Huawei Talkband B1 with monochrome display
  • 5.18. Futaba PMOLED
  • 5.19. Flexible display prototype driven by OTFT
  • 5.20. Apple Watch at the product launch event in September 2014
  • 5.21. Playstation VR
  • 5.22. PMOLED display used in Chrysler's Grand Cherokee
  • 5.23. PMOLED display used in GM's Chevrolet Corvette
  • 5.24. OLED display in the Lexus RX can display graphics and text
  • 5.25. Automotive displays from Futaba
  • 5.26. Digital rear-view mirror on the Audi R18 race car
  • 5.27. BMW M6 OLED display
  • 5.28. BMW M Performance Alcantara steering wheel with built-in PMOLED display
  • 5.29. AMOLED in automotive
  • 5.30. Sony 25" professional monitor
  • 5.31. eMagin's microdisplays
  • 5.32. Samsung NX30 with a 3" AMOLED display
  • 5.33. Microsoft Zune HD with 3.3" display
  • 5.34. The original Sony PSP Vita with a 5" OLED display
  • 5.35. Game controller with a small display
  • 6.1. OLED display market size by segments ($ million)
  • 6.2. OLED display market size by segments (M unit)
  • 6.3. OLED display market by display type ($ million)
  • 6.4. OLED display market by display type (M unit)
  • 6.5. Mobile phones ($ million)
  • 6.6. Mobile phones (M units)
  • 6.7. Tablet/Notebook displays ($ million)
  • 6.8. Tablet/Notebook displays (M units)
  • 6.9. TV and monitors ($ million)
  • 6.10. TV and monitors (M units)
  • 6.11. Wearable devices ($ million)
  • 6.12. Wearable devices (M units)
  • 6.13. Automotive and aerospace ($ million)
  • 6.14. Automotive and aerospace (M units)
  • 6.15. Industrial/Professional displays ($ million)
  • 6.16. Industrial/Professional displays (M units)
  • 6.17. Microdisplays ($ millions)
  • 6.18. Microdisplays (M units)
  • 6.19. Others ($ million)
  • 6.20. Others (M units)
  • 6.21. CAGR by market segment
  • 6.22. OLED market share for each segment as percentage of total market size
  • 6.23. Revenue forecast for plastic and flexible OLED displays
  • 7.1. Glass transition temperature (Tg) for various plastic substrates
  • 7.2. Upper operating temperature
  • 7.3. Heat stabilised PET and PEN
  • 7.4. Benchmarking based on 8 parameters
  • 7.5. FlexUP process for display backplane using a non-sticking debonding layer
  • 7.6. Key technologies for Samsung's flexible AMOLED displays
  • 8.1. Typical active matrix circuit for LCD, using one TFT and one storage capacitor per pixel
  • 8.2. (A) Example of a basic 2T1C circuit. (B) 4T1C circuit implementing voltage compensation
  • 8.3. Benchmarking of the semiconductor materials
  • 8.4. Improvement in carrier mobility of organic semiconductors over the last 30 years
  • 8.5. Organic materials can be rolled over a small radius
  • 8.6. Comparison between metal oxide and organic TFTs
  • 8.7. Foldable display by SEL and Nokia
  • 8.8. Tri-Fold Flexible AMOLED
  • 8.9. Historical annual sales from various suppliers of AMOLED and PMOLED
  • 8.10. Curved PMOLED display
  • 8.11. Film OLED product launch plan
  • 8.12. Glass-free OLED film
  • 8.13. Flexible PMOLED backplane
  • 8.14. Structure of the flexible PMOLED panel
  • 9.1. Typical OLED material stack in bottom emission OLED
  • 9.2. Function of each layer
  • 9.3. Various configurations for OLED materials
  • 9.4. Distinction between bottom-emission and top-emission OLED
  • 9.5. TADF performance data in litterature
  • 9.6. Vapour deposition using fine mesh mesh
  • 9.7. Alternatives to FMM
  • 9.8. WOLED was initially developed by Kodak
  • 9.9. Principles of tandem white OLED
  • 9.10. White OLED architecture used in microdisplays
  • 9.11. Two-mask display architecture
  • 9.12. Simulation results for the two-mask display architecture
  • 9.13. New AMOLED pixel architexture
  • 9.14. Deposition layout of four sub pixels
  • 9.15. Short term solution with Blue Common Layer
  • 9.16. Soluble OLED materials from Merck
  • 9.17. iPhone 5 (LCD), traditional RGB stripe
  • 9.18. Galaxy S3, Pentile S-stripe layout
  • 9.19. Galaxy S4, Diamond layout
  • 9.20. Galaxy S5 (diamond layout):
  • 9.21. Hodogaya business structure
  • 9.22. R&D activity of Idemitsu
  • 9.23. OLED material production plant, Paju
  • 9.24. Current performance of Konica Minolta
  • 9.25. Proprietary blue phosphorescent emitter
  • 9.26. Priority initiatives by sector
  • 9.27. Cheil Industries growth strategy
  • 9.28. Cheil's OLED materials sales
  • 9.29. Color performance from SFC
  • 9.30. Facilities in Korea
  • 9.31. UDC presentation slides
  • 9.32. UDC historical revenues
  • 10.1. Benchmarking different TCF and TCG technologies
  • 11.1. OLED and OPV have the most demanding requirements
  • 11.2. Schematic diagrams for encapsulated structures a) conventional b) laminated c) deposited in situ
  • 11.3. Scanning electron micrograph image of a barrier film cross section
  • 11.4. Design compromise for flexible barriers
  • 11.5. Lab WVTR achieved (in g/sq.m./day)in research for each of the companies involved in the development of flexible encapsulation solutions
  • 11.6. Surge in patent publications
  • 11.7. Examples of polymer multi-layer (PML) surface planarization a) OLED cathode separator structure b) high aspect ratio test structure
  • 11.8. Vitex multilayer deposition process
  • 11.9. SEM cross section of Vitex Barix material with four dyads
  • 11.10. Optical transmission of Vitex Barix coating
  • 11.11. Edge seal barrier formation by deposition through shadow masks
  • 11.12. Three dimensional barrier structure. Polymer is shown in red, and oxide (barrier) shown in blue
  • 11.13. Schematic of flexible OLED with hybrid encapsulation
  • 11.14. Corning's Flexible glass with protective tabbing on the edges
Back to Top