Cover Image
市場調查報告書

面向顯示器金屬氧化物TFT背板:分析與趨勢·市場

Metal Oxide TFT Backplanes for Displays 2014-2024: Analysis, Trends, Forecasts

出版商 IDTechEx Ltd. 商品編碼 254742
出版日期 內容資訊 英文 185 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
面向顯示器金屬氧化物TFT背板:分析與趨勢·市場 Metal Oxide TFT Backplanes for Displays 2014-2024: Analysis, Trends, Forecasts
出版日期: 2014年08月01日 內容資訊: 英文 185 Pages
簡介

金屬氧化物背板已經商業化。Sharp Corp在日本龜山工廠投資設立Gen8 IGZO的廠房,再加上LG也在大型白OLED(WOLED)技術上採用了IGZO背板。OLED產業預測2024年將使用7平方公里的金屬氧化物背板,顯示器模組級預測將成為可達到160億美金的市場。2024年LCD顯示器市場更加擴大,預測一年將追加至少1平方公里的氧化金屬背板需求。

本報告提供顯示器產業上的需求變化及伴隨其變化的背板材料及技術發展趨勢相關調查分析,提供您顯示器產業上的主要趨勢,各種背板技術的主要趨勢適應性,金屬氧化物材料的特徵及優點,新顯示器的介電要件,薄膜電晶體(TFT)的產品開發計劃,OLED市場成長趨勢,及主要企業簡介等。

第1章 金屬氧化薄膜半導體(MOS)

  • 氧化鋅:第一的n型氧化物
  • 為何非晶體氧化物實現了高度行動性和空間的均一性?
  • 領導的多元系氧化物
  • 為何是多元系?
  • 有助於設備設計·製造的多元系氧化物
  • p型摻雜和互補型邏輯:常常難以實現
  • 許多p型氧化物半導體的興起
  • 透明電子產品?
  • 透明度:不如宣傳那般理想的理由為何?
  • 在黑暗中也能長期持續的光電流
  • 製造
  • 目標市場

第2章 金屬氧化物電介質

  • 電晶體的介電要件
  • 電介質材料套組:傳統電子產品與金屬氧化物電子產品的適應性評估
  • 能隙和介電常數的權衡
  • 電介質:大能隙限制了選擇:確實的AlOx·SiOx
  • 哪個介電材料在ZnO為基礎的電子產品中最穩定?
  • 金屬氧化物的混合結構
  • 電介質的純度:對金屬氧化物而言重要
  • 電晶體中重要的鈍化處理· 但並非直接
  • 製造技術

第3章 背板技術趨勢

  • 積極 vs. 被動式矩陣
  • 顯示器技術
  • LCD顯示器 vs OLED顯示器

第4章 其他TFT技術

  • TFT技術
  • 基本的TFT結構
  • TFT形的優點
  • 非結晶,多晶矽及奈米晶體
  • 有機半導體
  • 印表機bull電晶體
  • 技術比較·基準

第5章 顯示器產業的形成趨勢

  • 3D
  • 規模
  • 彈性
  • 產品的差異化
  • 電力消耗
  • 壽命·消費行為
  • 透明度
  • 無框顯示器
  • 擴大處理用電力

第6章 彈性背板技術的進步

  • 用了不同背板的彈性OLED
  • 軟性顯示器的最新進步
  • 解決方案流程金屬氧化物

第7章 市場分析

  • 氧化物如何提供推動全體現有市場的要素價值?
  • 在新的環境中,哪個背板技術佔何種地位?
  • OLED,LCD及電子紙的氧化物背板之機會與課題
  • OLED領域的合資企業·聯盟·合作:時間軸
  • OLED顯示器產品的迅速增加
  • OLED:急速成長的市場
  • LCD產業也使用氧化物嗎?
  • Sharp Corp·HTC發表的IGZO產品
  • 價值鏈製圖

第8章 市場預測

  • OLED顯示器
  • LCD顯示器

第9章 企業簡介

  • OLED策略:各顯示器製造廠商
  • 企業採訪
  • 其他

IDTECHEX的調查報告·諮詢服務

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Metal oxide display backplanes have already gone commercial. Sharp has invested in establishing a Gen8 IGZO plant at its Kameyama plant in Japan while LG has also selected IGZO backplanes for its large-sized white OLED technology. At the same time, Chinese companies such as BOE are fast playing catch up with both prototype and production capacity announcements.

IDTechEx estimates that 7 km sqr of metal oxide backplanes will be used in the OLED industry in 2024, enabling a 16 billion USD market at the display module level. The LCD display market will add an extra demand of at least 1 km sqr per year in 2024 for metal oxide backplanes.

The display industry continues to rapidly change and seek new markets. Long term trends are still prevalent and shape global activity. Examples include reducing power consumption, improving image resolution, and decreasing device thickness. At the same, the need to differentiate and capture new markets such as wearable electronics is first bringing in robust and then flexible and bendable displays. These trends will drastically affect the technology requirements at many levels including the backplane level. This will stretch several existing solutions beyond likely performance limits, thereby creating openings and opportunities for new entrants and

The technology space for backplanes is complex. It consists of (a) mature technologies such as amorphous and polycrystalline silicon, (b) emerging technologies such as organic and metal oxides and (c) early state technologies such as graphene, carbon nanotubes, nanowires, etc. No single technology offers a one-size-fits-all solution and many technologies will co-exist in the market. Betting on the right technology will remain a decision-making nightmare.

It is within this emerging within this complex yet changing space that metal oxide are emerging. They promise low leakage currents, high mobility, amorphousity, stability and wide bandgap. These attributes promise to enable, respectively, power consumption reduction, compatibility with current-driven OLEDs and/or 3D displays, image uniformity over large areas, long lifetime and transparency.

In the short term, this will help enable higher resolution and lower power consumption levels in displays including LCDs (particularly in medium- to large-sized displays); while in the medium- to long-term metal oxides will help enable uniform medium- to large-sized OLED displays.

image1

IDTechEx draws upon its technical and market expertise to make sense of this space. IDTechEx analysts have hands-on experience of fabricating, characterising and modelling metal oxide TFTs and have developed a detailed body of market and technology knowledge around displays with strong emphasis on OLED displays including plastic and flexible versions. In this report, IDTechEx will deliver the following:

1. Ten-year market forecasts by market share, area coverage and market value (at module level) for LTPS, organics, a-Si, and metal oxides in

  • OLED mobile phones
  • OLED notebooks/tablets
  • OLED TV
  • OLED wearable devices
  • OLEDs in automotive and aerospace sectors

2. Ten year market forecasts for metal oxide backplanes in the LCD industry

3. Technology assessment, benchmarking and trending: IDTechEx provides detailed technology assessment and benchmarking of metal oxides and all other rival TFT technologies including organics, silicon (amorphous, nanocrystalline and polycrystalline), graphene, and carbon nanotubes.

IDTechEx will also provide up-to-date information and analysis on flexible and/or printed backplanes

4. Driver and trends: IDTechEx will identify and assess are macro level drivers and trends and will discuss how they will impact the industry as a whole and metal oxide backplanes in particular.

5. Company profiles

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. METAL OXIDE SEMICONDUCTORS

  • 1.1. Zinc oxide is the n-type oxide of choice
  • 1.2. Why amorphous oxides give both high mobility and high spatial uniformity?
  • 1.3. Multi-component oxides are leading the way
  • 1.4. Why go multi-component?
  • 1.5. Multi-component oxides give leverage in device design and manufacture
  • 1.6. p-doping and complementary logic are often not possible
  • 1.7. Some p-type oxide semiconductors are emerging
  • 1.8. Transparent electronics?
  • 1.9. Transparency is not as good as advertised- why?
  • 1.10. Photocurrent persists for long times, even in the dark
  • 1.11. Manufacture
    • 1.11.1. Sputtering
    • 1.11.2. Printing
  • 1.12. Target markets

2. DIELECTRICS FOR METAL OXIDES

  • 2.1. Dielectric requirements for transistors
  • 2.2. The dielectric material set- assessing suitability for traditional and metal-oxide electronics
  • 2.3. Trade-off between bandgap and dielectric constant
  • 2.4. Dielectrics- the wide bandgap limits the choice of dielectrics- AlOx and SiOx are promising
  • 2.5. Which dielectric material gives highest stability in ZnO-based electronics?
  • 2.6. Hybrid structures for metal oxides
  • 2.7. Dielectric purity is critical for metal oxides
  • 2.8. Passivation is critical in transistors but not straightforward
  • 2.9. Manufacturing techniques
    • 2.9.1. Explaining different techniques
    • 2.9.2. Comparing manufacturing techniques

3. TRENDS IN THE BACKPLANE TECHNOLOGY

  • 3.1. Active vs. passive matrix
  • 3.2. Display technologies
  • 3.3. LCD displays vs OLED displays

4. OTHER TFT TECHNOLOGY

  • 4.1. TFT technology
  • 4.2. Basic TFT configurations
  • 4.3. TFT figures of merit
  • 4.4. Amorphous, polycrystalline silicon and nanocrystallin
    • 4.4.1. Amorphous silicon
    • 4.4.2. Polycrystalline silicon
    • 4.4.3. Nanocrystalline silicon
  • 4.5. Organic semiconductors
    • 4.5.2. Graphene
    • 4.5.3. Other nanostructures
  • 4.6. Printable transistors
  • 4.7. Technology comparison and benchmark

5. TRENDS SHAPING THE DISPLAY INDUSTRY

  • 5.1. 3D
  • 5.2. Size and scale
  • 5.3. Flexibility
  • 5.4. Product differentiation
  • 5.5. Power consumption
  • 5.6. Lifetime and consumer behaviour
  • 5.7. Transparency
  • 5.8. Rimless displays
  • 5.9. Increasing processing power

6. PROGRESS WITH FLEXIBLE BACKPLANE TECHNOLOGIES

  • 6.1. Flexible OLED using different backplanes
  • 6.2. Latest progress on flexible displays
  • 6.3. Solution processed metal oxides

7. MARKET ANALYSIS

  • 7.1. How oxides deliver value across the existing market driver?
  • 7.2. Which backplane technology occupies which market position in the emerging landscape?
  • 7.3. Opportunities and challenges for oxide backplanes in OLEDs, LCDs and e-papers
  • 7.4. Joint venture, partnership and collaboration in the OLED space- a timeline
  • 7.5. OLED display products are rapidly multiplying
  • 7.6. OLED- a rapidly growing market
  • 7.7. Opportunities for oxides in the OLED display industry- data
  • 7.8. Will oxides also be used in the LCD industry?
  • 7.9. Sharp and HTC announces a IGZO product
  • 7.10. Value chain mapping

8. MARKET FORECAST

  • 8.1. OLED displays
    • 8.1.1. Mobile market
    • 8.1.2. Tablets and computers
    • 8.1.3. TVs
    • 8.1.4. Wearable devices
    • 8.1.5. Automotive
  • 8.2. LCD displays

9. COMPANY PROFILES

  • 9.1. OLED strategies by display manufacturers
    • 9.1.1. AUO
    • 9.1.2. BOE
    • 9.1.3. China Star Optoelectronic Technology (CSOT)
    • 9.1.4. Japan Display Inc (JDI)
    • 9.1.5. LG Display (LGD)
    • 9.1.6. Panasonic
    • 9.1.7. Samsung Display (SDC)
    • 9.1.8. Sharp
    • 9.1.9. Sony
    • 9.1.10. Visionox
  • 9.2. Company interviews
    • 9.2.1. Amorphyx
    • 9.2.2. CBrite
    • 9.2.3. Hewlett Packard
    • 9.2.4. Polyera Corporation
    • 9.2.5. PolyIC
    • 9.2.6. PragmatIC Printing
    • 9.2.7. Sharp
    • 9.2.8. Smartkem
  • 9.3. Other
    • 9.3.1. AimCore
    • 9.3.2. AJA International, Inc
    • 9.3.3. Angstrom Engineering
    • 9.3.4. Applied Materials
    • 9.3.5. BOE Display
    • 9.3.6. Cambridge Nanotech
    • 9.3.7. Dialog Semiconductors
    • 9.3.8. Hitachi Metals
    • 9.3.9. Idemitsu Kosan
    • 9.3.10. IGNIS Innovation
    • 9.3.11. Japan Display Inc
    • 9.3.12. LG
    • 9.3.13. Lucid Display Technology
    • 9.3.14. Magnachip Semiconductor Ltd
    • 9.3.15. Panasonic
    • 9.3.16. Prime View International
    • 9.3.17. Samsung Corning Precision Glass
    • 9.3.18. Samsung Electronics
    • 9.3.19. Samsung Institute of Advanced Technology
    • 9.3.20. Semiconductor Energy Laboratory
    • 9.3.21. Sharp
    • 9.3.22. Sony
    • 9.3.23. ThinFilms Inc
    • 9.3.24. Tokyo Institute of Technology
    • 9.3.25. ULVAC Corporation
    • 9.3.26. University of Oregon
    • 9.3.27. Vacuum Process Technology
    • 9.3.28. Veeco Instruments

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Bandgap, effective electron mass and electron affinity of ZnO, Ga2O3 and In2O3
  • 1.2. Key properties of thin film transistors made using different multi-component metal oxides including ZnO, GIZO, GIZO, ZrIZO, SZO, GSZO
  • 1.3. The current dominant industrial uses of metals used in multi-component oxide semiconductors (Zr, Hf, Sn, Ga, Zn, etc)
  • 1.4. Adverse effects of persistent photoconductivity on different applications
  • 1.5. Key target markets for oxide semiconductors
  • 2.1. Dielectric requirements for transistors including defect density, breakdown voltage, dielectric constant, band offsets
  • 2.2. Key characteristics and uses of different dielectric layers for both traditional and emerging oxide electronics
  • 2.3. Estimated band offsets between different dielectrics and GaInZnO
  • 2.4. Comparing the stability of different dielectric systems in oxide thin film transistors using our stability index
  • 2.5. Explaining and assessing different manufacturing techniques for depositing oxide dielectrics
  • 2.6. Comparing and benchmarking different manufacturing technique for oxide dielectric
  • 3.1. Comparing passive and active matrix systems on the basis of size, refresh rate, energy consumption, cross talk, etc.
  • 3.2. Explaining key parameters of display technologies that influence the requirements on the backplane technology
  • 4.1. Pros and cons of principle TFT architectures including staggered or co-planar top or bottom gate TFTs
  • 4.2. Explaining the key TFT figures-of-merit and assessing the link between the material and device design parameters influencing them
  • 4.3. Main consumer benefits delivered by LTPS
  • 4.4. Primary examples of p- and n-type soluble and non-soluble organic semiconductors
  • 4.5. Comparing the key attributes of different TFT technologies (a-Si, pc-Si, nc-Si, OTFT, graphene, CNT, etc). Parameters include manufacturing technique, mobility, uniformity, stability, and commercialisation stage and primary uses
  • 5.1. Comparing the lifetime, resolution and uniformity requirements of different display products including HDTV, monitor, PDA, PMP, mobile phone and signage
  • 5.2. Assessing the instability mechanisms present in each TFT backplane technology including oxide, organic, polycrystalline, nanocrystalline, etc.
  • 7.1. Assessing how oxides can meet the emerging needs that arise from existing drivers/trends in the display industry
  • 7.2. Announced and exiting production plans of major companies. The information includes backplane technology, display size, production throughput and plant territory
  • 9.1. Display production in mainland China

FIGURES

  • 1.1. Spherically-overlapping bonds make oxide semiconductors less sensitive to structural disorder
  • 1.2. Mapping out the effect of composition on electron mobility and microstructure of multi-component oxides
  • 1.3. How will mobility, ON/OFF ratio and threshold voltage vary as a function of Ga and In content
  • 1.4. The physics (thermodynamics) behind the difficulty in p-doping oxide semiconductors
  • 1.5. Choices for p-type oxide semiconductors
  • 1.6. Optically transparent thin film transistors
  • 1.7. Optical illumination leads to persistent photoconductivity
  • 1.8. Showing the different plasma regions in a typical sputtering process
  • 1.9. High performance oxide TFTs fabricated using printing with an annealing temperature <250C
  • 2.1. Inverse relationship between bandgap and permittivity constant in dielectrics
  • 2.2. Interactions between oxygen species and the active channel in oxide thin film transistors
  • 3.1. Passive or active matrix backplane in displays
  • 3.2. Linking the display technology (LCD, OLED, EPD, EWD, etc) with the requirements for the backplane technology
  • 3.3. Comparing and contrasting the design and attributes of LCD and OLED displays
  • 4.1. Extracting TFT figures-of-merit from the transfer and output characteristics of TFTs
  • 4.2. Different manufacturing routes for making thin film polycrystalline silicon
  • 4.3. Relationship between crystalline content on device mobility (electron or hole), process temperature, spatial uniformity, stability, etc.
  • 4.4. Improvements in the mobility of polymeric and small-molecule p- and n-type semiconductors as a function of year
  • 4.5. Comparing switching frequency of graphene devices against other RF devices including Si, InP, GaAs, CNT
  • 4.6. The inherent kink effect present in the output characteristics of graphene FETs
  • 4.7. Comparing the deposition process of one layer using traditional lithography-based methods and additive printing
  • 4.8. How printing simplified the manufacturing process by reducing the number of steps involved
  • 4.9. How printing can disrupts the value chain for graphene
  • 4.10. A plethora of printable semiconductors are available including PQT 12, graphene, c-Si, ZnO, CdSe, etc
  • 5.1. Examples of 3D displays
  • 5.2. A comparison of properties of two principle 3-D stereoscopic techniques
  • 5.3. 240 Hz driving methods of stereoscopic 3D displays (a) progressive emission, and (b) simultaneous emission method
  • 5.4. The scaling (substrate size) law in display. This is the equivalent for Moore's law for the display industry
  • 5.5. Evolution of display size from 1935 to 2011. This trend has been sustained by a change in technology from CRT to LCD
  • 5.6. Identifying the market niche for oxide semiconductors in the large-sized display segment
  • 5.7. Identifying the market gap for flexible display
  • 5.8. Comparing the properties of common plastic substrates including Kapton, PEEk, PET, PEN, PES, etc.
  • 5.9. The latest progress in developing coloured flexible OLED display driven by various back plane technologies including organics, LTPS and organics
  • 5.10. OLED have been a product differentiation factor in all manners of displays including music players, cameras, mobile phones, tablets, TVs, etc.
  • 5.11. The evolution for LCD display power consumption as a function of a shift from CCFL to LED backlight technology
  • 5.12. Comparing the power consumption for CCFL and LED LCD screens of various sizes in W/sqr. Inch
  • 5.13. Example of transparent 19-inch AMOLED TV or monitors
  • 5.14. Example of transparent mobile phone display
  • 5.15. Cut-off frequency as a function of field-effect mobility, mapping out which materials enable which circuit types
  • 6.1. Flexible OLED made using a-Si TFTs
  • 6.2. Flexible OLED made using polyscrystalline-Si TFTs
  • 6.3. Flexible OLED made using organic TFTs
  • 6.4. Flexible OLED made using metal oxide TFTs
  • 6.5. Tri-folded OLED displays reported by Semiconductor Energy Laboratory and Nokia Research Centre at SID 2014
  • 6.6. Production process folded used to make a tri-folded OLED display. This was reported by Semiconductor Energy Laboratory and Nokia Research Centre at SID 2014
  • 6.7. Structure of flexible AMOLED made by BOE
  • 6.8. A curved 9.5 inch AMOLED display
  • 6.9. 9.55 inch flexible AMOLED display subjected to 20mm curvature radius
  • 6.10. All organic flexible display
  • 6.11. Flexible OLED driven by evaporated OFET backplane shown at Printed Electronics Europe
  • 6.12. High-performance IGZO transistors deposited using a sol-gel method and annealed at 250C
  • 6.13. IGZO TFT synthesis
  • 7.1. Radar chart assessing the merits of different backplane technologies (LTPS, oxide, a-Si, organics) for LCD displays. The parameters considered are resolution, size, flexibility, on-pixel processing, and 3D. Here, the scale is from
  • 7.2. Radar chart assessing the merits of different backplane technologies (LTPS, oxide, a-Si, organics) for OLED displays. The parameters considered are resolution, size, flexibility, on-pixel processing, and 3D. Here, the scale is fro
  • 7.3. Development cycle and product pipeline for various display applications using oxide TFTs
  • 7.4. Joint venture, collaboration, partnership and distribution agreement timeline (2000-2012) in the OLED lighting and display industries
  • 7.5. Examples of key OLED display products on the market. The products include cameras, tablets, music players, mobile phones, TVs, etc and the producers include Nokia, Sony, Samsung, LG, HTC, Microsoft, Motorola, etc.
  • 7.6. Volume production (in units) for different companies in the OLED display space for 2008, 2009, 2010 and 2011
  • 7.7. Announced annual production capacity (area) of various OLED display manufactures in 2015-2016. Two categories are developed: 1) LTPS backplanes and 2) oxide backplanes
  • 7.8. Sharp tablet using an IGZO backplane system
  • 7.9. Mapping the emerging oxide electronic value chain by position and company name
  • 8.1. Market share of different backplane technology in the OLED mobile sector
  • 8.2. Total market in unit area (in Km2) for OLED mobile displays segmented by backplane technology
  • 8.3. Total market in for OLED mobile displays segmented by backplane technology
  • 8.4. Ten year forecast for market share for different backplane technologies in the OLED notebook and tablet sector
  • 8.5. Ten year forecast for total market in unit area (in Km2) for OLED notebooks and tablets segmented by backplane technology
  • 8.6. Ten year market forecast for total market value for OLED notebooks and tablets segmented by backplane technology
  • 8.7. Ten year forecast for market share for different backplane technologies in the OLED TV sector
  • 8.8. Ten year market forecast for total market in unit area (in Km2) for OLED TVs segmented by backplane technology
  • 8.9. Ten year market forecast for total market value for OLED TVs segmented by backplane technology
  • 8.10. Ten year forecast for market share for different backplane technologies in wearable electronic devices containing an OLED display (flexible or rigid)
  • 8.11. Ten year market forecast for total market in unit area (in Km2) for wearable electronic devices containing an OLED display (flexible or rigid)
  • 8.12. Ten year market forecast for total market value for wearable electronic devices containing an OLED display (flexible or rigid) segmented by backplane technology
  • 8.13. Ten year forecast for market share for different backplane technologies in OLED displays used in the automotive and aerospace sectors
  • 8.14. Ten year market forecast for total market in unit area (in Km2) for OLED displays used in the automotive and aerospace sectors
  • 8.15. Ten year market forecast for total market value for OLED displays used in the automotive and aerospace sectors segmented by backplane technology
  • 9.1. AUO OLED history
  • 9.2. Flexible 5" AMOLED display presented at SID2014
  • 9.3. CSOT AMOLED roadmap
  • 9.4. JDI strategy
  • 9.5. 55" and 77" curved OLED TV by LG
  • 9.6. RGB OLED vs WRGB OLED
  • 9.7. Plastic OLED display at SID 2013
  • 9.8. LG flexible display strategy
  • 9.9. Panasonic 4K 56" OLED TV at CES 2013
  • 9.10. Panasonic is also working on flexible displays (in collaboration with European research institutes). At the SID 2013 symposium, they gave a presentation on a 4" OLED displays made on a PEN substrate.
  • 9.11. SDC AMOLED production and capacity
  • 9.12. Expected revenue growth for Samsung Display
  • 9.13. AMOLED segments
  • 9.14. Samsung Youm
  • 9.15. Technology readiness for flexible AMOLED
  • 9.16. Strategic investment will secure growth momentum
  • 9.17. Flexible display with IGZO backplane presented at SID 2013
  • 9.18. Flexible 3.4" QHD OLED display by Sharp
  • 9.19. Sharp product range
  • 9.20. Super Top Emission
  • 9.21. Rollable 4.1" display presented in 2010
  • 9.22. Visionox G5.5 AMOLED MP line project
  • 9.23. 3.5 inch LTPS flexible full-color AMOLED
  • 9.24. Resistance stability of ultra-high density ITO target
Back to Top