Cover Image
市場調查報告書

電動車用電力電子技術:2017 - 2027年

Power Electronics for Electric Vehicles 2017-2027

出版商 IDTechEx Ltd. 商品編碼 253280
出版日期 內容資訊 英文 225 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
電動車用電力電子技術:2017 - 2027年 Power Electronics for Electric Vehicles 2017-2027
出版日期: 2017年05月12日 內容資訊: 英文 225 Slides
簡介

電動車電力電子技術市場規模、2027年預計達3,000億美元。

本報告針對電動車用電力電子市場、提供主要課題調查、區分分類電力電子市場預測、架構、與地區摘要情報。

第1章 摘要整理、結論

  • 定義
  • 重要性
  • 有助於主要需求的PE功能
  • 動力傳動的演進
  • 電力電子技術的擴大
  • 市場預測
  • 電壓動向
  • 旋轉機器的選擇:電力電子技術的影響
  • 簡化、電力電子減少的競爭
  • EV電力電子回收與其他新聞
  • 收購
  • 馬達變頻器的新技術

第2章 介紹

  • 調查範圍
  • 電力電子技術的成功
  • 重要性增加的電力電子技術
  • 電力電子基本、動向
    • 概要
    • 高速充電、事務多樣性
    • 通常需求縮小
    • 難以定義的通用控制器
    • 特殊要件:燃料電池實例
    • 網路整合是課題
  • 電壓
    • 概要
    • 48V使用種類
    • 例外:nanoFLOWCELL的48高級車
    • 電壓選擇BMW的見解
  • 整合、構造

第3章 電力電子設計

  • EV電力電子架構
    • 純電動車電力電子選擇
  • 混合
  • 需要最新電力電子未來機能
  • 電源模組
  • DC-DC變頻器
  • 汽車充電器及CAN巴士
  • 電池管理系統BMS

第4章 新活性材料、零件:SIC、GAN、GAAS、ETC

  • 概要
  • 廣能隙功率半導體
    • 概要
    • 住友電氣工業
    • EU
    • 碳化矽 (SiC) vs. 氮化鎵 (GaN) vs. Si動力設備:誰會贏?
  • 需求容量
  • 電動車能源採集
    • 概要
    • 能源採集的電力處理必要條件
    • 回生主動式懸吊的管理

第5章 48V輕度混合動力車電力電子技術

  • 目的、優點
  • 技術核心
  • 汽車48V輕度混合
  • 主要零組件 HEV, PHEV, PEV大幅不同
  • 輕度混合動力車起動裝置生成器整合型輸出控制
  • 48v輕度混合動力車系統的主要零組件:Audi BSG - 電池起動裝置生成器
  • 追加電力電子技術為基礎的很多48v系統引進的優點
  • 第1代48V系統
  • 48V技術藍圖
  • 48V投入建模:對第1、第2代Volkswagen SUV的IDTechEx 評論
  • 48V投入建模:對第1、第2代Volkswagen SUV的IDTechEx 評論
  • IDTechEx技術計畫

第6章 供應商比較

第7章 訪問

第8章 TOYOTA汽車實例分析

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

"In 2027 the power electronics market for electric vehicles will have reached $300 billion."

This report of over 220 very detailed slide format pages is replete with new forecasts, analysis and infographics seeing the roadmap and financial projections to a future where land, water and airborne vehicles will be electric. The emphasis is land vehicles. It fully explains why power electronics is becoming more important in the performance and cost of an electric vehicle, hybrid or pure electric. Reasons given include expected tough 2025 and 2030 regulations making most conventional powertrains illegal and the ongoing quest for performance improvement including better life and reliability. The report explains how power electronics may be part of the powertrain traction system, loosely related to it or not related and what that means, given in many new graphical summaries.

The key parts of recent presentations by the key players are assessed in this work, which was researched in 2016/2017 by PhD level IDTechEx analysts travelling worldwide. Interviews, IDTechEx databases, web searches and conference attendance were extensively used. Old information is useless in this now fast moving field.

The report starts with a comprehensive Executive Summary and Conclusions which includes a close look at all the key issues. Ten year forecasts for power electronics are broken down into motor controllers, recuperation, electricity import, electricity export, BMS with boost converters, climate control and then other, with a full explanation of the many things in these categories. The total printed electronics market in billions of dollars and as percentage of the electric vehicle market is projected, backed up by ten year forecasts by number of 46 categories of electric vehicle land, water and air.

The Introduction then looks at many examples of power electronics explained in the context of powertrain options, future successes and expected failures. It covers such things as why universal and merged motor controllers are both elusive but more per vehicle will appear. Network integration, powertrain options, voltage trends and structural electronics potential are detailed. Design of Power Electronics comes next, embracing where, why and what new forms are appearing. Issues concerning power modules and battery management system design are here, for example.

The fourth chapter consists of new materials and components for power electronics because they are so key to the future. That includes SiC and GaN power semiconductors and new harvesting chemistries. Chapter 5 covers power electronics for 48V mild hybrid and beyond, carefully explaining the rapidly increasing complexity of power circuits and peripherals for these and successor powertrains. Detailed technology roadmaps complete this chapter which is followed by supplier comparisons and a key interview, a large number of other interviews being embedded in the earlier text.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition
  • 1.2. Importance
  • 1.3. PE functions serving the central needs
  • 1.4. Powertrain evolution
    • 1.4.1. Existing 12V cars and 24V trucks and buses were out of development potential
    • 1.4.2. Evolving options
    • 1.4.3. Future options
    • 1.4.4. Powertrain comparisons
    • 1.4.5. Future powertrain winners and losers
    • 1.4.6. Preferred powertrains by company 2016-2030: survey
  • 1.5. Power electronics proliferation
    • 1.5.1. Changes as powertrains evolve
    • 1.5.2. Example: Power electronics proliferation as 48V mild hybrids evolve
    • 1.5.3. Window of opportunity for 12V + 48V MH systems & for 48V MH: interviews
  • 1.6. Market forecasts
    • 1.6.1. Importance of PE for EVs: forecast to 2020
    • 1.6.2. Addressable car market
    • 1.6.3. IDTechEx forecast $% and $bn for EV power electronics by type
    • 1.6.4. IDTechEx global EV forecasts number thousand 2017-2027 in 46 categories
    • 1.6.5. Traction rotating electric machines/ motor controllers per vehicle by 46 types with main powertrain adopted by type
    • 1.6.6. Conventional vs 48V mild hybrid vs electric cars
    • 1.6.7. Technology roadmaps to 2040
  • 1.7. Voltage trends
    • 1.7.1. Pure electric vehicles
    • 1.7.2. Voltage trends for hybrid electric vehicles
  • 1.8. Rotating machine options: power electronics implications
    • 1.8.1. Overview
    • 1.8.2. Controlling integrated motor controls- in-wheel
    • 1.8.3. Control of the increasingly popular two motor systems
  • 1.9. Race to simplify and eliminate power electronics
  • 1.10. EV power electronics recycled and other news in 2017
  • 1.11. Acquisitions in 2017
  • 1.12. New approach to motor inverters

2. INTRODUCTION

  • 2.1. Scope
  • 2.2. Power electronics successes
  • 2.3. Power electronics gains importance
  • 2.4. Power electronics fundamentals and trends
    • 2.4.1. Overview
    • 2.4.2. Faster change, more variety of tasks
    • 2.4.3. Downsizing is usually required
    • 2.4.4. Universal controllers are elusive
    • 2.4.5. Special requirements: example fuel cells
    • 2.4.6. Network integration is an issue
  • 2.5. Voltages
    • 2.5.1. Overview
    • 2.5.2. Types using 48V
    • 2.5.3. Exception to the rule: Nanoflowcell 48V premium cars
    • 2.5.4. BMW view of voltage choices
  • 2.6. Integration and structural

3. DESIGN OF POWER ELECTRONICS

  • 3.1. Power electronics architecture in EVs
    • 3.1.1. Pure electric vehicle power electronics choices
  • 3.2. Hybrids
  • 3.3. Future functions requiring new power electronics
  • 3.4. Power module
    • 3.4.1. Power module architecture
    • 3.4.2. Die attachment
    • 3.4.3. Die interconnection, thermal
    • 3.4.4. Power module failure modes
    • 3.4.5. Unusual needs and solutions
  • 3.5. DC DC converter
  • 3.6. On-board charger and CAN bus
    • 3.6.1. Integrated motor drive charger
  • 3.7. Battery Management System BMS

4. NEW ACTIVE MATERIALS AND COMPONENTS: SIC GAN GAAS ETC

  • 4.1. Overview
  • 4.2. Wide bandgap power semiconductors
    • 4.2.1. Overview
    • 4.2.2. Sumitomo Electric
    • 4.2.3. European Union
    • 4.2.4. Silicon Carbide vs Gallium Nitride vs Si Power Devices: which win?
  • 4.3. Capacitors needed
  • 4.4. Energy harvesting for electric vehicles
    • 4.4.1. Overview
    • 4.4.2. Energy harvesting power handling requirements
    • 4.4.3. Managing regenerative active suspension

5. POWER ELECTRONICS FOR 48V MILD HYBRIDS AND BEYOND

  • 5.1. Purpose and benefits
  • 5.2. Technological heart
  • 5.3. 48V mild hybrid for a car
  • 5.4. Key components mostly different from HEV, PHEV, PEV
  • 5.5. Integrated power control for mild hybrid starter generator
  • 5.6. Key components of 48V mild hybrid system: Audi BSG = Battery Starter Generator
  • 5.7. Many benefits of 48V system adoption based on extra power electronics
  • 5.8. First generation 48V system
  • 5.9. 48V Technology Roadmaps
  • 5.10. Modelling 48V introduction: Volkswagen SUV, IDTechEx comment Gen 1&2
  • 5.11. Modelling of 48V introduction: Volkswagen SUV, IDTechEx comment Gen2&3
  • 5.12. IDTechEx technology timeline 2016-2028

6. SUPPLIER COMPARISONS

7. INTERVIEW WITH CPT

  • 7.1. Visit to Controlled Power Technologies CPT Ltd UK

8. TOYOTA CASE STUDY

  • 8.1. Toyota Development of Power Control Unit for Compact-Size Vehicle
Back to Top