Cover Image
市場調查報告書

石墨烯及2D材料的市場·技術·市場機會:2015-2025年

Graphene, 2D Materials and Carbon Nanotubes: Markets, Technologies and Opportunities 2016-2026

出版商 IDTechEx Ltd. 商品編碼 249885
出版日期 內容資訊 英文 235 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
石墨烯及2D材料的市場·技術·市場機會:2015-2025年 Graphene, 2D Materials and Carbon Nanotubes: Markets, Technologies and Opportunities 2016-2026
出版日期: 2016年03月14日 內容資訊: 英文 235 Slides
簡介

石墨烯市場預測到2026年材料層級將成長到將近2億美元的規模。

本報告提供石墨烯的技術及市場相關調查,提供您石墨烯市場發展的過程與今後展望,石墨烯的各種製造·加工技術,各用途的詳細分析與10年成長預測,並彙整主要市場趨勢與市場影響因素及市場機會分析,主要企業的採訪,以及主要企業的簡介等資訊。

第1章 簡介

  • 石墨烯的各種類型
  • 石墨烯的各種製造手法
  • 主要的石墨烯製造途徑
  • 石墨烯的形狀
  • 市場的狀況·趨勢·展望
  • 市場情形概要
  • 供應商數的增加
  • 媒體的關注和專利的增加
  • 石墨烯研究的大規模投資
  • 石墨烯企業成立的投資
  • 石墨烯企業的收益
  • IPO
  • 供應商的形態·投資·收益
  • 中國的崛起
  • 中國:奈米碳管的成功
  • 專利趨勢
  • 透過石墨礦床認識石墨烯的市場機會
  • 製造能力:各企業
  • 中人的重要性
  • 石墨烯的價格和價格策略
  • 品質和一貫性課題
  • 石墨烯用途的開發平台
  • 目前石墨烯支援產品
  • 石墨烯供應商的基準

第2章 市場預測

  • 10年石墨烯市場預測
  • 石墨烯片及石墨烯薄板的預測
  • 石墨烯市場實際成果
  • 石墨烯市場預測
  • 石墨烯片需求的預測

第3章 石墨烯的製造

  • 膨脹石墨
  • 還原型氧化石墨烯
  • 石墨的氧化
  • 還原氧化石墨烯
  • 直接液相剝離
  • 剪力剝離的直接液相剝離
  • 電化學剝離
  • 電化學剝離石墨烯的特徵
  • 等離子剝離
  • 無基板CVD
  • 無基板CVD (等離子)
  • 化學氣相澱積 (CVD)
  • 化學氣相澱積
  • 化學氣相澱積的轉印流程等

第4章 石墨烯材料

  • 石墨烯材料

第5章 石墨烯的用途與市場

第6章 透明導電性薄膜

  • 透明導電性薄膜
  • 銦錫氧化物 (ITO)
  • 透明導電性薄膜的市場預測
  • ITO薄膜的市場上效能
  • ITO薄膜的製造成本和彈性
  • ITO薄膜及銦的供需趨勢
  • TCF的市場動態及需求變化
  • ITO替代物的評估
  • 石墨烯的TCF的效能
  • 石墨烯TCF的SWOT分析
  • 銀奈米線TCF的效能
  • 銀奈米線TCF的彈性
  • 銀奈米線TCF的成本結構
  • 市場上的銀奈米線產品
  • 金屬網格TCF的效能
  • 金屬網格TCF的彈性
  • 奈米碳管 TCF的效能
  • 奈米碳管TCF的有益資訊
  • TCF技術標竿
  • ITO替代物的10年市場預測等

第7章 石墨烯導電油墨

  • 石墨烯導電油墨的效能
  • 導電性石墨烯墨水的用途
  • 透過石墨烯墨水的電阻加熱
  • 透過石墨烯墨水的除霜
  • RFID的各種類型
  • RFID天線市場
  • RFID標籤的成本明細
  • RFID天線的製造手法

第8章 超級電容器

  • 超級電容器的10年市場預測:各用途
  • 超級電容器的用途的開發平台
  • 超級電容器的成本結構
  • 超級電容器的成本明細
  • 運輸用途的超級電容器電極
  • 超級電容器電極的可尋址市場的預測
  • 奈米碳的超級電容器的效能
  • 現有商用超級電容器的效能
  • 石墨烯的課題
  • 奈米碳管 超級電容器的效能
  • 奈米碳管的潛在的優點等

第9章 能源儲存

  • 鋰離子電池的發展過程
  • 鋰離子電池前後的定量基準
  • 鋰離子電池的成本明細
  • LFP陰極的改良
  • 石墨烯和碳黑的同時利用的理由
  • 透過石墨烯的NCM電池陰極的改良
  • LiTiOx陽極材料的改良等

第10章 複合材料

  • 複合材料的石墨烯添加劑利用:概要
  • 石墨烯導電性複合材料:商業性成果
  • 導電性複合材料
  • EMI遮蔽
  • 導電性複合材料的CNT的成功
  • 導電性塑膠的CNT利用:產品範例等

第11章 電晶體用石墨烯及2D材料

  • 石墨烯電晶體的效能
  • 其他2D材料等

第12章 輪胎

  • 輪胎添加劑的石墨烯
  • 石墨烯推動兩輪輪胎的進步
  • 輪胎的碳黑
  • 汽車輪胎的黑碳
  • 黑碳的各種類型等

第13章 感測器

  • 石墨烯GFET感測器
  • 高速石墨烯光電傳感器
  • 石墨烯濕度感測器等

第14章 其他的用途

  • 防原因塗料
  • 水過濾
  • 未來的用途等

第15章 奈米碳管的發展的檢討

第16章 企業採訪

  • Abalonyx AS
  • Advanced Graphene Products
  • Anderlab Technologies Pvt. Ltd.
  • Angstron Materials
  • Applied Graphene Materials
  • Bluestone Global Tech
  • Cabot Corporation
  • CrayoNano
  • Directa Plus
  • Grafen Chemical Industries
  • Graphenano
  • Graphene Frontiers
  • Graphene Laboratories, Inc
  • Graphene Square
  • Graphene Technologies
  • Graphenea
  • Group NanoXplore Inc.
  • Grupo Antolin Ingenieria
  • Haydale Ltd
  • Incubation Alliance
  • Jinan Moxi New Material Technology
  • Nanjing JCNANO Technology
  • NanoInnova
  • Perpetuus Graphene
  • The Sixth Element
  • Thomas Swan
  • University of Cambridge UK
  • University of Exeter
  • Vorbeck Materials
  • Wuxi Graphene Film
  • XFNANO
  • XG Sciences, Inc.
  • Xiamen Knano
  • XinNano Materials Inc
  • Xolve, Inc

第17章 企業簡介

  • 2D Carbon Graphene Material Co., Ltd
  • Airbus
  • Aixtron
  • AMO GmbH
  • Asbury Carbon
  • AZ Electronics
  • BASF
  • Cambridge Graphene Centre
  • Cambridge Graphene Platform
  • Carben Semicon Ltd
  • Carbon Solutions, Inc.
  • Catalyx Nanotech Inc. (CNI)
  • CRANN
  • Georgia Tech Research Institute (GTRI)
  • Grafoid
  • Graphene Devices
  • Graphene NanoChem
  • Graphensic AB
  • HDPlas
  • Head, Austria
  • HRL Laboratories
  • IBM
  • iTrix
  • JiangSu GeRui Graphene Venture Capital Co., Ltd.
  • Lockheed Martin
  • Massachusetts Institute of Technology (MIT)
  • Max Planck Institute for Solid State Research
  • Momentive
  • Nanjing JCNANO Tech Co., LTD
  • Nanjing XFNANO Materials Tech Co.,Ltd
  • Nanostructured & Amorphous Materials, Inc.
  • Nokia
  • Pennsylvania State University
  • Power Booster
  • Quantum Materials Corp
  • Rensselaer Polytechnic Institute (RPI)
  • Rice University
  • Rutgers - The State University of New Jersey
  • Samsung Electronics
  • Samsung Techwin
  • SolanPV
  • Spirit Aerosystems
  • Sungkyunkwan University Advanced Institute of Nano Technology (SAINT)
  • Texas Instruments
  • Thales
  • University of California Los Angeles, (UCLA)
  • University of Manchester
  • University of Princeton
  • University of Southern California (USC)
  • University of Texas at Austin
  • University of Wisconsin-Madison

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Our latest up-to-date analysis shows that the graphene market will grow to $220m by 2026

This report provides the most comprehensive and authoritative view of the topic, giving detailed ten-year market forecasts segmented by application and material type. The market forecasts are given in tonnage and value at the material level. Furthermore, this report includes compressive interview-based profiles of all the key players the industry, providing intelligence on the investment levels, expected future revenues, and the production capacity across the industry and by supplier. In addition, this report critically reviews all existing and emerging production process.

This report also gives detailed, fact-based and insightful analysis of all the existing and emerging target applications. For target applications, the report provides an assessment and/or forecast of the addressable markets, key trends and challenges, latest results and prototype/product launches, and the IDTechEx insight on the market potential.

Unrivalled business intelligence and market insight

This report is based upon years of research and close engagement with the community of graphene and CNT producers, investors and users. In the past five years, we have interviewed and profiled almost all the graphene and carbon nanotube suppliers globally (>40), advised many investors and chemical companies on their graphene (and CNT) strategy, and guided many end-users.

In parallel to this, IDTechEx Research has itself organised seven international tradeshows and conferences on Graphene and 2D Materials. These commercial conferences have become the forum in which the latest innovations are announced and the latest products are launched. More importantly, they have become the premier international venue in which suppliers and users directly connect. This has given us an unrivalled access to all the players across the graphene/CNT community.

IDTechEx analysts also travel the world extensively to attend and lecture at all the conferences and tradeshows relevant to graphene and CNTs, giving us further opportunity to get to know the industry well, and hear and interpret the latest developments. We are confident that our knowledge and insight into the technologies, markets and applications of graphene and 2D materials is without parallel the world over.

The graphene market to reach 3, 800 tonnes per year in 2026

IDTechEx Research projects that the graphene market will grow to $220m in 2026. This forecast is at the material level and does not count the value of graphene-enabled products. In many instances graphene is only an additive with low wt% values.

A continual decline in average sales prices will accompany the revenue growth, meaning that volume sales will reach nearly 3.8 k tpa (tonnes per annum) in 2026. Despite this, IDTechEx forecasts suggest that the industry will remain in a state of over-capacity until 2021 beyond which time new capacity will need to be installed. Furthermore, IDTechEx Research forecasts that nearly 90% of the market value will go to graphene platelets (vs. sheets) in 2026.

The market will be segmented across many applications, reflecting the diverse properties of graphene. In general, we expect functional inks and coatings to reach the market earlier. This is a trend that we forecasted several years ago and is now observed in prototypes and small-volume applications. Indeed, IDTechEx Research projects that the market for functional inks and coatings will make up 21% of the market by 2018. Ultimately however, energy storage and composites will grow to be the largest sectors, controlling 25% and 40% of the market in 2026, respectively.

Figure 1. Ten-year market projections split by application.
Please contact us for the exact values.
Inset: market share of graphene platelets vs
sheets in 2026 by value.

Source: IDTechEx

What this report provides

  • 1. Ten-year market forecasts for graphene and CNTs segmented by material type and application (by volume and value).
  • 2. Investment, capacity and revenue by company.
  • 3. Interview-based company profiles of 50 graphene and CNT companies.
  • 4. Benchmarking of suppliers on the basis of technology readiness and medium-term commercial opportunity.
  • 5. Market trends and dynamics including:
    • a. Go-to-market strategy
    • b. Prices and pricing strategy
    • c. Product qualities and morphologies
    • d. Consistency and quality issues
    • e. Intermediary challenges
    • f. Current and expected product launches
    • g. Application timeline
  • 6. Overview of the multi-walled carbon nanotube industry including:
    • a. Production capacity by supplier
    • b. Current applications and forecast application pipeline
    • c. Segmented ten-year market projections
    • d. Benchmarking and mapping key players
  • 7. Detailed overview of production methods including:
    • a. Oxidisation-reduction
    • b. Direct liquid phase exfoliation
    • c. Electrochemical exfoliation
    • d. Plasma exfoliation
    • e. Substrate-less plasma or CVD growth
    • f. CVD growth of graphene sheets
    • g. Epitaxial
  • 8. Detailed application assessment often including IDTechEx insight and assessment, state-of-the-art and commercial progress, analysis of competing technologies, pricing trends, addressable market size, and ten-year market projections for:
    • a. Transparent conducting films
    • b. Functional inks and pairs
    • c. RFID antennas
    • d. Anti-corrosion coatings
    • e. Supercapacitors
    • f. Silicon anode
    • g. Li sulphur
    • h. Li ion and other battery technologies
    • i. Conductive, thermal, permeation or mechanically-enhanced composites
    • j. Graphene and 2D materials for transistors
    • k. Tires
    • l. Sensors
    • m. Anti-corrosion
    • n. Water filtration

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. INTRODUCTION

  • 1.1. There are many graphene types
  • 1.2. Many ways of producing graphene
  • 1.3. Explaining the main graphene manufacturing routes
  • 1.4. Morphologies of graphene on offer
  • 1.5. Market conditions, trends and outlook
  • 1.6. General observations on the market situation
  • 1.7. Moving past the peak of hype
  • 1.8. Supplier numbers on the rise
  • 1.9. Media attention and patent publications on the rise
  • 1.10. Large scale investment in graphene research
  • 1.11. Investment in graphene company formation
  • 1.12. Revenue of graphene companies
  • 1.13. The industry is still in the red
  • 1.14. Initial public offerings
  • 1.15. Information on supplier morphology, investment & revenue
  • 1.16. The rise of China
  • 1.17. China was successful in carbon nanotubes
  • 1.18. Patent trends
  • 1.19. Graphite mines see opportunity in graphene
  • 1.20. Production capacity by player
  • 1.21. The importance of intermediaries
  • 1.22. Graphene Prices and Pricing Strategy
  • 1.23. Quality and consistency issue
  • 1.24. Graphene application pipeline
  • 1.25. Graphene-enabled products and important prototypes
  • 1.26. Benchmarking graphene suppliers

2. MARKET PROJECTIONS

  • 2.1. Granular ten year graphene market forecast
  • 2.2. Ten year graphene market forecast
  • 2.3. Forecast for graphene platelet vs sheets
  • 2.4. Graphene market in 2019
  • 2.5. Graphene market in 2026
  • 2.6. Forecast for volume (MT) demand for graphene platelets

3. GRAPHENE PRODUCTION

  • 3.1. Expanded graphite
  • 3.2. Reduced graphene oxide
  • 3.3. Oxidising graphite
  • 3.4. Reducing graphene oxide
  • 3.5. Direct liquid phase exfoliation
  • 3.6. Direct liquid phase exfoliation under shear force
  • 3.7. Electrochemical exfoliation
  • 3.8. Properties of electrochemical exfoliated graphene
  • 3.9. Plasma exfoliation
  • 3.10. Substrate-less CVD
  • 3.11. Substrate-less CVD (plasma)
  • 3.12. Chemical vapour deposition (CVD)
  • 3.13. Chemical vapour deposition
  • 3.14. Transfer process for chemical vapour deposition
  • 3.15. Roll-to-roll transfer of CVD graphene
  • 3.16. Novel methods for transferring CVD graphene
  • 3.17. Sony's approach to transfer of CVD process
  • 3.18. Sony's CVD graphene approach
  • 3.19. Wuxi Graphene Film Co's CVD graphene progress
  • 3.20. Direct growth of CVD on SiOx?
  • 3.21. Production cost of CVD graphene
  • 3.22. Epitaxial
  • 3.23. Largest single-crystalline graphene reported ever

4. GRAPHENE MATERIALS

  • 4.1. Pictures of graphene materials

5. GRAPHENE APPLICATIONS AND MARKETS

6. TRANSPARENT CONDUCTIVE FILMS

  • 6.1. Indium Tin Oxide
  • 6.2. Market forecast for transparent conducting films
  • 6.3. Performance of ITO films on the market
  • 6.4. Production cost and flexibility of ITO films
  • 6.5. Supply and demand for ITO films and indium
  • 6.6. Changing TCF market dynamics and needs
  • 6.7. Assessment of ITO alternatives
  • 6.8. Graphene performance as TCF
  • 6.9. SWOT analysis on graphene TCFs
  • 6.10. Performance of silver nanowire TCFs
  • 6.11. Flexibility of silver nanowire TCFs
  • 6.12. Silver nanowire TCF cost structure
  • 6.13. Silver nanowire products on the market
  • 6.14. Metal mesh TCF performance
  • 6.15. Flexibility of metal mesh TCFs
  • 6.16. Performance of carbon nanotube TCFs
  • 6.17. Useful information on carbon nanotube TCFs
  • 6.18. Benchmarking TCF technologies
  • 6.19. Make or break year for ITO alternatives?
  • 6.20. Consolidation period for the ITO alternative market
  • 6.21. ITO alternative ten-year market forecast

7. GRAPHENE CONDUCTIVE INKS

  • 7.1. Performance of Graphene conductive inks
  • 7.2. Applications of conductive graphene inks
  • 7.3. Resistive heating using graphene inks
  • 7.4. De-frosting using graphene inks
  • 7.5. De-icing using graphene heaters
  • 7.6. Transparent EMI shielding
  • 7.7. Graphene-enabled products and important prototypes
  • 7.8. Graphene inks can be highly opaque
  • 7.9. RFID types
  • 7.10. RFID antenna market figures
  • 7.11. RFID antennas
  • 7.12. Cost breakdown of RFID tags
  • 7.13. Methods of producing RFID antennas

8. SUPERCAPACITORS

  • 8.1. Ten-year market forecast for supercapacitors by application
  • 8.2. Application pipeline for supercapacitors
  • 8.3. Cost structure of a supercapacitor
  • 8.4. Cost breakdown of supercapacitors
  • 8.5. Supercapacitor electrode mass in transport applications
  • 8.6. Addressable market forecast for supercapacitor electrodes
  • 8.7. Supercapacitor performance using nanocarbons
  • 8.8. Performance of existing commercial supercapacitors
  • 8.9. Challenges with graphene
  • 8.10. Graphene surface area is far from the ideal case
  • 8.11. Promising results on graphene supercapacitors
  • 8.12. Performance of carbon nanotube supercapacitors
  • 8.13. Potential benefits of carbon nanotubes
  • 8.14. Challenges with the use of carbon nanotubes
  • 8.15. Electrode chemistries of supercapacitor suppliers

9. ENERGY STORAGE

  • 9.1. Historical progress in Li ion batteries
  • 9.2. Quantitative benchmarking of Li and post-Li ion batteries
  • 9.3. Quantitative benchmarking of Li and post-Li ion batteries
  • 9.4. EV numbers used in this projections
  • 9.5. Electrode mass by battery type
  • 9.6. Cost breakdown of Li ion batteries
  • 9.7. LFP cathode improvement
  • 9.8. Why graphene and carbon black are used together
  • 9.9. Graphene improves NCM battery cathode
  • 9.10. LiTiOx anode Improvement
  • 9.11. How CNT improve the performance of commercial Li ion batteries
  • 9.12. Why graphene helps in Si anode batteries
  • 9.13. State of the art in silicon-graphene anode batteries
  • 9.14. Samsung's result on Si-graphene batteries
  • 9.15. State of the art in silicon-graphene anode batteries
  • 9.16. Why graphene helps in Li sulphur batteries
  • 9.17. State of the art in use of graphene in Li Sulphur batteries
  • 9.18. Graphene battery announcement
  • 9.19. Graphene-enabled products and important prototypes

10. COMPOSITES

  • 10.1. General observation on using graphene additives in composites
  • 10.2. Commercial results on graphene conductive composites
  • 10.3. Conductive composites
  • 10.4. EMI Shielding
  • 10.5. How do CNTs do in conductive composites
  • 10.6. CNT success in conductive composites
  • 10.7. Examples of products that use CNTs in conductive plastics
  • 10.8. Young's Modulus enhancement
  • 10.9. Commercial results on permeation graphene improvement
  • 10.10. Permeation Improvement
  • 10.11. Thermal conductivity improvement
  • 10.12. Commercial results on thermal conductivity improvement using graphene
  • 10.13. Thermal conductivity improvement using graphene

11. GRAPHENE AND 2D MATERIALS FOR TRANSISTORS

  • 11.1. Performance of graphene transistors
  • 11.2. Graphene transistor based on work function modulation
  • 11.3. Other 2D materials are better at creating transistor functions
  • 11.4. Mobility of 2D materials as a function of bandgap
  • 11.5. Suitability of 2D materials for large-area flexible devices
  • 11.6. Effect of growth method on mobility

12. TIRES

  • 12.1. Graphene as additive in tires
  • 12.2. Progress on graphene-enabled bicycle tires
  • 12.3. Carbon black in tires
  • 12.4. Black carbon in car tires
  • 12.5. There are many types of black carbon
  • 12.6. CNT and graphene are the least ready emerging tech for tire improvement
  • 12.7. Results on use of graphene in silica loaded tires
  • 12.8. Comments on CNT and graphene in tires
  • 12.9. Total addressable market for graphene in tires

13. SENSORS

  • 13.1. Graphene GFET sensors
  • 13.2. Fast graphene photosensor
  • 13.3. Graphene humidity sensor
  • 13.4. Optical brain sensors using graphene
  • 13.5. Graphene skin electrodes
  • 13.6. Wearable stretch sensor using graphene

14. OTHER APPLICATIONS

  • 14.1. Anti-corrosion coating
  • 14.2. Water filtration
  • 14.3. Lockheed Martin's water filtration
  • 14.4. Graphene-enhanced condoms?
  • 14.5. Future applications

15. REVIEW OF PROGRESS WITH CARBON NANOTUBES

  • 15.1. Carbon nanotubes- the big picture
  • 15.2. Carbon nanotubes are more mature than graphene
  • 15.3. Carbon nanotubes prices are falling
  • 15.4. Already commercial applications of CNTs
  • 15.5. Application Timeline
  • 15.6. Production capacity of carbon nanotubes
  • 15.7. Loss of differentiation in CNTs
  • 15.8. Differentiating between CNTs and graphene
  • 15.9. Will the CNT industry consolidate?
  • 15.10. Player dynamics in the CNT business
  • 15.11. Ten-year market forecast for MWCNTs

16. INTERVIEW BASED COMPANY PROFILES

  • 16.1. Abalonyx AS
  • 16.2. Advanced Graphene Products
  • 16.3. Anderlab Technologies Pvt. Ltd.
  • 16.4. Angstron Materials
  • 16.5. Applied Graphene Materials
  • 16.6. Arkema
  • 16.7. Bayer MaterialScience AG (now left the business)
  • 16.8. Bluestone Global Tech (now left the business)
  • 16.9. C3Nano
  • 16.10. Cabot Corporation
  • 16.11. Cambridge Nanosystems
  • 16.12. Canatu
  • 16.13. Charmtron Inc
  • 16.14. CNano Technology
  • 16.15. CrayoNano
  • 16.16. Directa Plus
  • 16.17. g2o
  • 16.18. Gnanomat
  • 16.19. Grafen Chemical Industries
  • 16.20. Grafentek
  • 16.21. Grafoid
  • 16.22. Graphenano
  • 16.23. Graphene 3D Lab
  • 16.24. Graphene Frontiers
  • 16.25. Graphene Laboratories, Inc
  • 16.26. Graphene Square
  • 16.27. Graphene Technologies
  • 16.28. Graphenea
  • 16.29. Group NanoXplore Inc.
  • 16.30. Grupo Antolin Ingenieria
  • 16.31. Incubation Alliance
  • 16.32. Jinan Moxi New Material Technology
  • 16.33. Nanjing JCNANO Technology
  • 16.34. Nanocyl
  • 16.35. NanoInnova
  • 16.36. NanoIntegris
  • 16.37. Nantero
  • 16.38. OCSiAl
  • 16.39. OneD Material LLC
  • 16.40. Perpetuus Graphene
  • 16.41. Poly-Ink
  • 16.42. Pyrograf Products
  • 16.43. Raymor Industries, Inc.
  • 16.44. Showa Denko K.K
  • 16.45. SiNode Systems
  • 16.46. Skeleton Technologies
  • 16.47. SouthWest NanoTechnologies, Inc.
  • 16.48. The Sixth Element
  • 16.49. Thomas Swan
  • 16.50. Timesnano
  • 16.51. Unidym Inc
  • 16.52. Vorbeck Materials
  • 16.53. Wuxi Graphene Film
  • 16.54. XFNANO
  • 16.55. XG Sciences, Inc.
  • 16.56. Xiamen Knano
  • 16.57. XinNano Materials Inc
  • 16.58. Xolve, Inc
  • 16.59. Zyvex

17. COMPANY PROFILES

  • 17.1. 2D Carbon Graphene Material Co., Ltd
  • 17.2. Airbus, France
  • 17.3. Aixtron, Germany
  • 17.4. AMO GmbH, Germany
  • 17.5. Asbury Carbon, USA
  • 17.6. AZ Electronics, Luxembourg
  • 17.7. BASF, Germany
  • 17.8. Cambridge Graphene Centre, UK
  • 17.9. Cambridge Graphene Platform, UK
  • 17.10. Carben Semicon Ltd, Russia
  • 17.11. Carbon Solutions, Inc., USA
  • 17.12. Catalyx Nanotech Inc. (CNI), USA
  • 17.13. CRANN, Ireland
  • 17.14. Georgia Tech Research Institute (GTRI), USA
  • 17.15. Grafoid, Canada
  • 17.16. Graphene Devices, USA
  • 17.17. Graphene NanoChem, UK
  • 17.18. Graphensic AB, Sweden
  • 17.19. HDPlas, USA
  • 17.20. Head, Austria
  • 17.21. HRL Laboratories, USA
  • 17.22. IBM, USA
  • 17.23. iTrix, Japan
  • 17.24. JiangSu GeRui Graphene Venture Capital Co., Ltd.
  • 17.25. Lockheed Martin, USA
  • 17.26. Massachusetts Institute of Technology (MIT), USA
  • 17.27. Max Planck Institute for Solid State Research, Germany
  • 17.28. Momentive, USA
  • 17.29. Nanjing JCNANO Tech Co., LTD
  • 17.30. Nanjing XFNANO Materials Tech Co.,Ltd
  • 17.31. Nanostructured & Amorphous Materials, Inc., USA
  • 17.32. Nokia, Finland
  • 17.33. Pennsylvania State University, USA
  • 17.34. Power Booster, China
  • 17.35. Quantum Materials Corp, India
  • 17.36. Rensselaer Polytechnic Institute (RPI), USA
  • 17.37. Rice University, USA
  • 17.38. Rutgers - The State University of New Jersey, USA
  • 17.39. Samsung Electronics, Korea
  • 17.40. Samsung Techwin, Korea
  • 17.41. SolanPV, USA
  • 17.42. Spirit Aerosystems, USA
  • 17.43. Sungkyunkwan University Advanced Institute of Nano Technology (SAINT), Korea
  • 17.44. Texas Instruments, USA
  • 17.45. Thales, France
  • 17.46. University of California Los Angeles, (UCLA), USA
  • 17.47. University of Manchester, UK
  • 17.48. University of Princeton, USA
  • 17.49. University of Southern California (USC), USA
  • 17.50. University of Texas at Austin, USA
  • 17.51. University of Wisconsin-Madison, USA

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

Back to Top