Cover Image
市場調查報告書

超級電容器技術、市場:2018年∼2028年

Supercapacitor Technologies and Markets 2018-2028

出版商 IDTechEx Ltd. 商品編碼 239694
出版日期 內容資訊 英文 250 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
超級電容器技術、市場:2018年∼2028年 Supercapacitor Technologies and Markets 2018-2028
出版日期: 2017年11月27日 內容資訊: 英文 250 Slides
簡介

全球超級電容器市場可望在2028年超過10億美金規模。特別是對電動車(EV)快速充電基礎設施的需求增加更是令人期待。在企業方面,中國製造商可望展現大幅躍進。

本報告針對超級電容器的技術及市場進行分析,超級電容的基本構造、主要用途、技術開發動向、價值鏈結構(原料及需求方的動向)、主要應用領域的詳細趨勢、主要企業檔案、主要技術與產品等情報皆彙整提供如後。

第1章 摘要整理與市場預測

第2章 超級電容器市場的現況

  • 競爭環境
  • 各企業最近的業績

第3章 超級電容器的供應鏈

  • 超級電容器的供應鏈:在歐洲的展望
  • 為何超級電容器製造商煩惱活性物質的準備?
  • 產量動向

第4章 超級電容器的成本結構

  • 超級電容器的成本結構
  • 超級電容器的成本因鋰離子電池而快速下跌
  • 如何替能源/電子設備標價?
  • 超級電容器:錯誤公制的受害者?
  • 混合ESS (=超級電容器+電池):導致能源效率化

第5章 技術概要

  • 超級電容器是什麼?
  • 不同能源儲存技術在能源及電力方面的相對性能表現
  • 電池的生命週期
  • 電池及超級電容器的充電與放電表現
  • 超級電容器性能的實際極限
  • 電池與超級電容器
  • 理論原理
  • 電容器的種類
  • 原理:電容 靜電容量
  • 原理:超級電容 超靜電容量
  • 原理:超級電容器的能源/電力
  • 超級電容器回路
  • 贗電容/電磁誘導行為
  • 混核電容器
  • 超級電容器/電池混合系統的優點
  • 自我放電

第6章 超級電容器的零件及其在性能方面扮演的角色

  • 超級電容器回路
  • 超級電容器的零件
  • 電極材料:碳、接合劑、添加物
  • 電極材料:碳
  • 細孔尺寸對電容很重要
  • 表面面積的增加:碳的活性化
  • 石墨烯與超級電容器
  • 石墨烯:性能的提升
  • 石墨烯:超越誇大宣傳的成長
  • 理想石墨烯具備不凡特質
  • 石墨烯與前驅材料
  • 表面的有效利用相關課題
  • 酸化石墨烯 (GO) 的減少
  • 石墨烯/石墨/CNT材料
  • VOGN (垂直方向石墨烯奈米膜)
  • 超級電容器的性能
  • 石墨烯的性能強化
  • 從事強化石墨烯性能的企業
  • 奈米碳管與超級電容器
  • 奈米碳管 (CNT)
  • 性能提升案例:奈米碳管/碳
  • 性能提升:奈米碳管
  • 性能提升:石墨烯/CNT
  • 超級電容器的電極
  • 電極
  • 性能提升:電極的角色 的角色
  • 有機 vs. 水性電極
  • 安全規定 (日本):必須考慮的狀況
  • 各製造商所採用的電極
  • 水性電極SC的性能提升
  • 水性電極超級電容器:與有機電極超級電容器同等性能
  • 維持性能表現之際,超級電容器中的環境友善材料
  • 電極的趨勢
  • 電極的新趨勢:離子液體
  • 超級電容器離子膠電極用的離子液體與石墨烯
  • 超級電容器中連接器所扮演的角色
  • 離子液體電極製造過程中的天然纖維素
  • 其他技術進步:FASTcap

第7章 超級電容器的市場

  • 3種主要部門
  • 汽車應用(現有) 自動車向ん用途 (既存)
  • 汽車以外應用(現有)
  • 中期應用 用途
  • 市場區隔:法拉/電池組
  • 超級電容器市場:Panasonic
  • 為何要在能源系統中使用超級電容器?
  • 美國陸軍的磁軌砲

第8章 電子機器的超級電容器

  • 智慧/攜帶式設備中超級電容器的角色
  • 主要實現技術與系統
  • 為何是無線感測器網路?
  • 無線感測器網路與IoT
  • 重要基礎設施監控
  • 無線感測器網路
  • 為何超級電容器使用無線感測器網路?
  • 一般連網設備的平均電力消費量
  • 能源採集與超級電容器
  • 無線感測器網路(WSN)運作檔案
  • 對電力需求檔案的影響
  • 電池的薄型化
  • 為何微型超級電容器在WSM及其他消費性電子產品中?
  • 微型超級電容器
  • 製造技術:降低成本的關鍵

第9章 運輸方面的超級電容器

  • 汽車超級電容器的課題
  • 超級電容器代替一部分電池:價格雖昂貴儲存容量雖小但....
  • 超級電容器在電力總成電氣化各階段都有需要扮演的角色
  • 怠速熄火系統:微型混合動力車
  • 能源回收:微型混合動力車
  • Continental - 成功事例
  • 電池
  • 電動家用廂型車
  • 需求點的電力
  • 電力控制式煞車
  • 馬自達 (日本) 與Bollore Pininfarina (法國/義大利)
  • Williams Advanced Engineering
  • 汽車產業中的超級電容器
  • 製造方的見解
  • 汽車超級電容器:至今為止的技術進步
  • 未來的超級電容器:結構性能源儲存方式
  • 超級電容器與SE (結構性電子):ZapGo
  • 超級電容器取代燃料電池:快速充電/放電
  • Bombardier:輕軌等超級電容器能源採集
  • 鐵路:兩種應用超級電容器的方法
  • Wayside Rail HESS:頻率的限制與能源效率
  • Sinautec bus:較長壽、更可靠、反應更好,完全取代電池
  • ABB - TOSA巴士充電系統(日內瓦):超級電容器支援快速充電
  • 快速充電與放電
  • 油電混合巴士:美國
  • 油電混合巴士:中國
  • 油電混合巴士:系列混合
  • 油電混合巴士:平行混合
  • 模組式彈性油電混合巴士
  • Maxwell Technologies的引擎啟動模組
  • Idling的問題
  • ESM的價值地圖
  • 2種預設選項與中古車市場(售後服務)
  • 大型卡車的超級電容器
  • 中古車 (售後服務) 的超級電容器市場
  • 跑車與超級電容器
  • 分析結果:豐田汽車 Yaris 油電混合R
  • 超級電容器在航太產業的用途
  • 無線感測器網路:飛機
  • 能源採集與電力儲存:結構健康監控

第10章 各種工業用超級電容器

  • 各種工業用超級電容器
  • 斷電時的緊急備用電源:超越單純電池的作用
  • 港口吊臂用超級電容器
  • 大樓電梯
  • 智慧電表 - AMR
  • 手持產品的快速充電
  • 影印機
  • Aowei製 (中國MIIT認證) 的大型港口拖吊車用超級電容器
  • 提吊作業用超級電容器,以及從短距離移動回收能源
  • 超級電容器與堆高機的結合
  • 前所未見的堆高機
  • 超級電容器/石墨烯工作坊的結果(法蘭克福)

第11章 電網的超級電容器

  • 電網的能源儲存
  • 能源儲存的利用:超級電容器與HESS
  • 混合能源儲存系統:優點
  • 電網中超級電容器的角色
  • Duke Energy的Rankin變電所:太陽能發電的間歇性修勻與移峰填谷
  • 風力發電的發電量修勻
  • 愛爾蘭微電網試驗場
  • Freqcon:公用事業規模的超級電容器
  • 來自業界的反應
  • 日本Chemi-Con的開發計畫

第12章 超級電容器的競爭:鈦酸鋰

  • 超級電容器 (SC) 與鋰離子電池 (LIB) 的比較:價格/電力
  • 電池企業:東芝
  • 東芝的SCiB性能
  • 東芝的SCiB生產工廠
  • 東芝的研究開發 (R&D) 活動
  • 村田製作所:邁向LIB的一小步
  • 石墨烯:LTO陽極改良
  • 日本Chemi-Con與電池用LTO

第13章 混合超級電容器、超級電容電池、非對稱超級電容器

  • 產品一覽
  • 超級電容器與混合超級電容器
  • 競爭環境
  • 超級電容器革命
  • 奈米混核電容器 (NHC)
  • 超級電池
  • 混合超級電容器/超級電容電池:可使用水性或非水性電極
  • 電動車快速充電基礎設施的LIC:ZapGo
  • 未來預測 (2018~2028)

第14章 企業訪問與訪談內容

  • 豐田汽車
  • Eaton Corporation (美國)
  • General Capacitor (美國)
  • Ioxus (美國)
  • JSR Micro (日本)
  • Maxwell Technologies (美國)
  • 村田製作所 (日本)
  • 日本Chemi-con (日本)
  • Supreme Power Solutions (SPS) (中國)
  • YES Clean Energy (美國)
  • Auckland University Chemical & Materials Engineering
  • Auckland University Electrical & Computer Engineering (紐西蘭)
  • Waikato University (紐西蘭)

第15章 附錄

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Title:
Supercapacitor Technologies and Markets 2018-2028
Electric double-layer capacitors (EDLC), ultracapacitors, lithium-ion capacitors.

The supercapacitor market size will be over $1B by 2028.

After a couple of years of stagnation, the supercapacitor industry is showing renewed signs of market penetration, mostly in the automotive sector with the adoption of start-stop supercapacitor technology in the US by General Motors and Mercedes. Supercapacitors are also becoming the dominant technology in large wind turbine pitch control applications, and the global uptake of wind renewable energy will favour the growth of supercapacitor technology. As a matter of fact, the grid market which includes wind turbines, grid energy storage and rail wayside offers opportunities for growth for all players. At the same time, many new applications are opening up with the lower-end electrical engineering applications at 1-400 Farad being a new focus.

Chinese supercapacitor manufacturers are emerging and potentially displacing western companies domestically in the following years. The supercapacitor market in China for non-Chinese companies is now highly uncertain and they look to diversify out of the Chinese electric bus market and into emerging segments such as grid. China has recently reversed its policy on traditional hybrid vehicles, declaring that in 2030, 30% of cars made would be hybrids that do not plug in. The railway regeneration business in China generated the world's largest supercapacitor order in 2015 and it is expanding geographically there.

Lithium titanate batteries are the main competitor of supercapacitor technologies, first in automotive and recently in energy harvesting for IoT applications. Hybrid Li-ion capacitors also have the possibility to capture market value in areas where high power is still paramount, but some extra capacity is desired too.

Within this framework, IDTechEx has produced an excellent market report on supercapacitor technologies and markets. The first part gives an overview of the supercapacitor market, based on company visits in Europe, Japan, and the US, as well as conversations with companies exhibiting at the main energy storage events around the world. A summary of the supercapacitor value chain and cost structure complements the initial market overview. The subject is further examined by giving a list of examples of emerging markets where supercapacitors can make a difference, such as industrial vehicles and airborne wind energy.

Subsequently, the report contains a detailed analysis of the operating principle of both capacitors, supercapacitors, and lithium-ion capacitors, with an explanation of the nuances and differences in those three energy storage technologies. The potential of graphene and carbon nanotubes (CNT) in supercapacitors is evaluated, together with examples from the industry where those two carbon-based materials are used. The electrolyte market, which is subjected to regulation and disruption, is also analysed, with a breakdown of electrolyte choice by supercap manufacturer.

Finally, the markets where supercapacitors can be used are analysed one by one, from transportation, to wireless sensor networks, to stationary storage, to renewables integration, railway, consumer electronics, industrial vehicles, and much more.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND MARKET FORECASTS

  • 1.1. Focus of this report and primary trends
  • 1.2. Progress with supercapacitors (2017)
  • 1.3. Progress in new applications (Q3 2017)
  • 1.4. New applications: Airborne Wind Energy
  • 1.5. New applications: Electric Vehicles for Construction
  • 1.6. Kone Cranes adopts supercapacitors
  • 1.7. Turnkey installation with minimal vehicle engineering
  • 1.8. Forecasts
  • 1.9. Forecasts 2018-2028

2. STATE OF THE SUPERCAPACITOR MARKET (2017)

  • 2.1. Competitive Landscape
  • 2.2. Company performance 2017 vs. 2016

3. SUPERCAPACITORS' SUPPLY CHAIN

  • 3.1. European perspective on supply chain in supercapacitors
  • 3.2. Why do SC manufacturers bother in preparing the active material?
  • 3.3. Manufacturing development trends

4. SUPERCAPACITORS' COST STRUCTURE

  • 4.1. Cost Structure Supercapacitors
  • 4.2. Supercapacitors cost reduction is far quicker than lithium ion batteries
  • 4.3. How to price energy/power devices?
  • 4.4. Supercapacitors: victims of the wrong performance metric?
  • 4.5. Hybrid ESS = SC + Battery leads to cost benefits

5. TECHNOLOGY OVERVIEW

  • 5.1. What is a supercapacitor?
  • 5.2. Relative performance in Energy and Power of different energy storage technologies
  • 5.3. Battery cycle life
  • 5.4. Charge and discharge behavior Batteries and Supercapacitors
  • 5.5. Practical limits to SC performance
  • 5.6. Batteries and Supercapacitors
  • 5.7. Theoretical principles
  • 5.8. Types of capacitor
  • 5.9. Principles - capacitance
  • 5.10. Principles - supercapacitance
  • 5.11. Principles - energy and power in supercapacitors
  • 5.12. Schematics of a supercapacitor
  • 5.13. Pseudo capacitance or faradaic behavior
  • 5.14. Hybrid capacitors
  • 5.15. Benefits of SC and Battery hybrid systems
  • 5.16. Self Discharge

6. SUPERCAPACITOR COMPONENTS AND THEIR ROLE IN PERFORMANCE

  • 6.1. Schematics of a supercapacitor
  • 6.2. Supercapacitors components
  • 6.3. Electrode materials - carbon, binders and additives
  • 6.4. Electrode materials - Carbon
  • 6.5. Pore size matters for capacitance
  • 6.6. Increase Surface Area - Activation of Carbon
  • 6.7. Graphene and supercapacitors
  • 6.8. Increasing performance - Graphene
  • 6.9. Graphene: beyond the hype
  • 6.10. Ideal graphene has remarkable properties
  • 6.11. Graphene and precursor materials
  • 6.12. Surface utilisation challenge
  • 6.13. Graphene Oxide (GO) reduction
  • 6.14. Graphene/Graphite/CNT materials
  • 6.15. Vertically Oriented Graphene Nanosheets (VOGN)
  • 6.16. Supercapacitor performance
  • 6.17. Increasing performance - Graphene
  • 6.18. Companies setting targets to Increase performance - Graphene
  • 6.19. Carbon nanotubes and supercapacitors
  • 6.20. Carbon nanotubes CNT
  • 6.21. Example Increasing performance - Carbon Nanotubes/ Carbon
  • 6.22. Increasing performance - Carbon Nanotubes
  • 6.23. Increasing performance Graphene/CNT
  • 6.24. Electrolytes for supercapacitors
  • 6.25. Electrolytes
  • 6.26. Increasing performance the role of electrolytes
  • 6.27. Organic vs aqueous electrolytes
  • 6.28. Safety - Japanese regulation: a situation to consider
  • 6.29. Electrolytes used by manufacturer
  • 6.30. Increasing performance of aqueous electrolyte SC
  • 6.31. Aqueous based electrolyte supercapacitors match performance of organic electrolyte supercapacitors
  • 6.32. Environmentally friendly materials in Supercapacitors while keeping performance
  • 6.33. Trends in electrolytes
  • 6.34. New trend in electrolytes... Ionic Liquids
  • 6.35. Ionic liquids and graphene for ionogel electrolytes in SC
  • 6.36. The role of binders in SC
  • 6.37. Natural Cellulose in Ionic Liquid Electrode Manufacturing process
  • 6.38. Other technological advances - FASTcap

7. MARKETS FOR SUPERCAPACITORS

  • 7.1. Three main market segments
  • 7.2. Existing Automotive Applications details
  • 7.3. Existing non-automotive applications
  • 7.4. Medium term applications
  • 7.5. Market segmentation by Farad/cell
  • 7.6. The SC market according to Panasonic
  • 7.7. Why SC in Energy Systems? Energy management in fluctuating power demand systems.
  • 7.8. US Army's railgun

8. SUPERCAPACITORS IN ELECTRONICS

  • 8.1. A role for supercapacitors in Smart and Portable Devices
  • 8.2. Key enabling technologies and systems
  • 8.3. Why Wireless Sensor Networks
  • 8.4. Wireless Sensor Networks and IoT
  • 8.5. Why Wireless Sensor Networks?
  • 8.6. Critical infrastructure monitoring
  • 8.7. Wireless Sensor Node
  • 8.8. Why SC in Wireless Sensor Networks?
  • 8.9. Typical average power of connected devices
  • 8.10. Energy harvesting and supercapacitors
  • 8.11. WSN operational profile
  • 8.12. Why SC in Wireless Sensor Networks?
  • 8.13. And that has an impact in power demand profiles...
  • 8.14. Batteries are getting thinner
  • 8.15. Why Micro-SC in WSN and other consumer electronics?
  • 8.16. Energy harvesting with SC
  • 8.17. Microsupercapacitors
  • 8.18. Manufacturing techniques are key to low cost

9. SUPERCAPACITORS IN TRANSPORTATION

  • 9.1. Challenges for SC in Automotive
  • 9.2. Supercapacitors are replacing some batteries - expensive and little energy stored but...
  • 9.3. Supercapacitors have a role in each stage of powertrain electrification
  • 9.4. Start-stop Systems - Micro hybrids
  • 9.5. Energy Recovery - Mild Hybrid
  • 9.6. Continental - a success story
  • 9.7. Battery
  • 9.8. E.Home electric van
  • 9.9. Power at the point of demand
  • 9.10. Electronic Controlled Brake
  • 9.11. Mazda Japan and Bollore Pininfarina (France/Italy)
  • 9.12. Williams Advanced Engineering
  • 9.13. Supercapacitor in the automotive sector
  • 9.14. OEM's point of view
  • 9.15. Supercapacitors in the Automotive Sector
  • 9.16. SC progress in Automotive up to date
  • 9.17. Supercapacitors in the future - Structural Energy Storage
  • 9.18. SC and structural electronics - ZapGo
  • 9.19. SC replace batteries on fuel cell for fast charge/ discharge
  • 9.20. Bombardier light rail and others use supercapacitor energy harvesting
  • 9.21. Rail: two ways of applying supercapacitors
  • 9.22. Wayside Rail HESS: Frequency regulation and energy efficiency
  • 9.23. Longer life, more reliable, better response. Completely replaces battery in pure electric Sinautec bus
  • 9.24. Supercapacitors assist fast charging in ABB's TOSA bus charging system in Geneva
  • 9.25. Fast charge-discharge
  • 9.26. Hybrid buses in the US
  • 9.27. Hybrid buses in China
  • 9.28. Hybrid Bus - Series Hybrid
  • 9.29. Hybrid Bus - Parallel Hybrid
  • 9.30. Modular flexible hybrid drives
  • 9.31. Maxwell Technologies Engine Start Module
  • 9.32. Idling is a problem
  • 9.33. ESM Value proposition
  • 9.34. Two markets default option and retrofit (after market)
  • 9.35. Supercapacitors in heavy trucks
  • 9.36. SC market in retrofit or aftersales
  • 9.37. Sports cars use supercaps
  • 9.38. Sports cars use supercapacitors
  • 9.39. The result - the Toyota Yaris Hybrid-R
  • 9.40. Supercapacitors applications in Aerospace
  • 9.41. Wireless Sensor Networks - Aviation
  • 9.42. Energy harvesting and storage for structural health monitoring

10. SUPERCAPACITORS IN INDUSTRIAL APPLICATIONS

  • 10.1. Supercapacitors in Industrial Applications
  • 10.2. Emergency backup when the electrics fail: more likely to work than a battery
  • 10.3. Supercapacitors in Port Cranes
  • 10.4. Building Elevators
  • 10.5. Smart Metering - AMR
  • 10.6. Handheld products - Fast Charging
  • 10.7. Photo-copying machines
  • 10.8. Super Capacitor Heavy-duty Port Towing Vehicle produced by Aowei Certified by MIIT
  • 10.9. SC in Lifting operations + Energy Recovery from Short Trips
  • 10.10. Forklifts
  • 10.11. Meeting on supercapacitors and forklifts
  • 10.12. Forklifts may not be the same again
  • 10.13. Results of the SC/graphene workshop in Frankfurt

11. SUPERCAPACITORS IN GRID APPLICATIONS

  • 11.1. Grid Energy Storage
  • 11.2. Uses of energy storage - SC and HESS
  • 11.3. Hybrid energy storage systems: benefits
  • 11.4. The role of SC in the grid
  • 11.5. Duke Energy Rankin substation: PV intermittency smoothing + load shifting
  • 11.6. Smoothing wind farm power output
  • 11.7. Ireland Microgrid test bed
  • 11.8. Freqcon - utility-scale supercapacitors
  • 11.9. Response from the industry
  • 11.10. Nippon Chemi-Con development plan

12. SUPERCAPACITORS MAIN COMPETITION: LITHIUM TITANATE BATTERIES

  • 12.1. Comparison of SC with LIB: price/power
  • 12.2. Battery company: Toshiba
  • 12.3. Features of Toshiba's SCIB
  • 12.4. Production plant for Toshiba's SCIB
  • 12.5. Toshiba R&D activities
  • 12.6. Small footprint Lithium titanate batteries by Murata
  • 12.7. Graphene - LTO anode Improvement
  • 12.8. Nippon Chemicon and LTO at Battery Japan

13. HYBRID SUPERCAPACITORS, SUPERCABATTERIES OR ASYMETRIC SUPERCAPACITORS

  • 13.1. Nomenclature
  • 13.2. Supercapacitors and Hybrid supercap.
  • 13.3. Competitive landscape
  • 13.4. Supercapacitors evolution
  • 13.5. Nano hybrid capacitor (NHC)
  • 13.6. Ultrabattery
  • 13.7. Hybrid SC-Supercabateries can use aqueous or non aqueous electrolytes
  • 13.8. LICs for EV fast charging infrastructures - ZapGo
  • 13.9. Forecasts 2018-2028

14. COMPANY VISITS AND INTERVIEWS BY DR. PETER HARROP

  • 14.1. Toyota Japan
  • 14.2. Eaton Corporation USA
  • 14.3. General Capacitor USA
  • 14.4. Ioxus USA
  • 14.5. JSR Micro Japan
  • 14.6. Maxwell Technologies USA
  • 14.7. Murata Japan
  • 14.8. Nippon Chemi-con Japan
  • 14.9. Supreme Power Solutions (SPS) China
  • 14.10. YES Clean Energy USA
  • 14.11. Auckland University Chemical & Materials Engineering
  • 14.12. Auckland University Electrical & Computer Engineering New Zealand
  • 14.13. Waikato University New Zealand

15. APPENDIX

  • 15.1. List of abbreviations
Back to Top