Cover Image
市場調查報告書

超級電容器技術、市場 2016-2026年:電雙層電容器 (EDLC) 、超級電容器,鋰離子電容器

Supercapacitor Technologies and Markets 2016-2026: Electric double-layer capacitor (EDLC), ultracapacitor, lithium-ion capacitor

出版商 IDTechEx Ltd. 商品編碼 239694
出版日期 內容資訊 英文 191 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
超級電容器技術、市場 2016-2026年:電雙層電容器 (EDLC) 、超級電容器,鋰離子電容器 Supercapacitor Technologies and Markets 2016-2026: Electric double-layer capacitor (EDLC), ultracapacitor, lithium-ion capacitor
出版日期: 2016年08月03日 內容資訊: 英文 191 Slides
簡介

本報告提供超級電容器及混合超級電容器技術和各應用區分中的新興儲能技術的作用調查分析。

第1章 摘要整理和結論

  • 本報告的焦點及主要趨勢
  • 技術
  • 超級電容器的零組件與其性能的作用
  • 保持超級電容器的性能同時更環保的材料

第2章 超級電容器的主要競爭:鈦酸鋰電池

  • 電池企業:東芝
  • 混合超級電容器,超級汽車電池或不對稱超級電容器

第3章 超級電容器的市場

  • 3大市場區隔
  • 電子超級電容器
  • 運輸的超級電容器
  • 產業應用的超級電容器
  • 電網的應用的超級電容器

第4章 超級電容器市場的狀況

  • 競爭情形

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Supercapacitors are an emerging energy storage technology that will take a key role in the future of energy systems. This technology will supplement and, in some cases, replace the role of incumbent energy storage technologies such as lithium ion batteries, addressing the weakest points of battery technologies such as low power, limited number of cycles and low performance at low temperatures. With steady progress, supercapacitors are getting traction in mainstream application markets such as the automotive sector and opening new possibilities in emerging sectors such as grid energy storage.

This 190 slide report covers supercapacitor and hybrid supercapacitor technologies and their role as emerging energy storage technologies in different application segments.

Important market trends

  • Supercapacitor technologies offer a promising role in the future of sustainable energy systems from electric vehicles to renewable energy and electricity grids.
  • After a couple of years of stagnation the supercapacitor industry is showing renewed signs of market penetration, mostly in the automotive sector with the adoption of supercapacitor technology in the USA by General Motors.
  • The supercapacitor market in China for western companies remains highly uncertain and western companies look to diversify in two directions, first out of the Chinese electric bus market and secondly into emerging segments such as grid.
  • Chinese supercapacitor manufacturers are emerging and potentially displacing western companies domestically in the following years.
  • Europe will start manufacturing supercapacitors.
  • The grid market which includes wind turbines, grid energy storage and rail wayside offers opportunities for growth for all players.
  • Supercapacitors are becoming the dominant technology in wind turbine pitch control applications, the global uptake of wind renewable energy will favour the growth of supercapacitor technology.

Important technology trends

  • Aqueous electrolyte based supercapacitor technology has reached performance parity with organic electrolyte based supercapacitors.
  • Supercapacitor products are incrementally improving performance reaching 3 Volts and higher temperature performance as required by early adopters of the technology (i.e. automotive sector).
  • Lithium titanate batteries are the main competitor of supercapacitor technologies, first in automotive and recently in energy harvesting for IoT applications.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1.1. Focus of this report and primary trends
  • 1.2. Technology
    • 1.2.1. What is a supercapacitor?
    • 1.2.2. Relative performance in energy and power of different energy storage technologies
    • 1.2.3. Battery cycle life
    • 1.2.4. Batteries and supercapacitors
    • 1.2.5. Benefits of SC and Battery hybrid systems
    • 1.2.6. Self Discharge
    • 1.2.7. Charge and discharge behavior - batteries and supercapacitors
    • 1.2.8. Types of capacitor
    • 1.2.9. Principles - capacitance
    • 1.2.10. Principles - supercapacitance
    • 1.2.11. Principles - energy and power in supercapacitors
    • 1.2.12. Pseudo capacitance or faradic behavior
  • 1.3. Supercapacitor components and their role in performance
    • 1.3.1. Supercapacitors components
    • 1.3.2. Electrode materials - carbon, binders and additives
    • 1.3.3. Electrode materials - carbon
    • 1.3.4. Pore size matters for capacitance
    • 1.3.5. Increase surface area - activation of carbon
    • 1.3.6. Increasing performance - graphene
    • 1.3.7. Ideal graphene has remarkable properties
    • 1.3.8. Graphene and precursor materials
    • 1.3.9. Surface utilisation challenge
    • 1.3.10. Graphene Oxide (GO) reduction
    • 1.3.11. Graphene/Graphite/CNT materials
    • 1.3.12. Vertically Oriented Graphene Nanosheets
    • 1.3.13. Supercapacitor performance
    • 1.3.14. Increasing performance - graphene
    • 1.3.15. Companies setting targets to increase performance - graphene
    • 1.3.16. Increasing performance graphene/CNT
    • 1.3.17. Example increasing performance - carbon nanotubes /carbon
    • 1.3.18. Increasing performance - carbon nanotubes
    • 1.3.19. Carbon nanotubes CNT
    • 1.3.20. Electrolytes
    • 1.3.21. Increasing performance the role of electrolytes
    • 1.3.22. Organic vs aqueous electrolytes
    • 1.3.23. Organic vs aqueous electrolytes
    • 1.3.24. Safety - the Japanese regulation: a situation to consider
  • 1.4. Environmentally friendlier materials in supercapacitors while keeping performance
    • 1.4.1. Trends in electrolytes
    • 1.4.2. Increasing performance of aqueous electrolyte SC
    • 1.4.3. New trend in electrolytes... ionic liquids
    • 1.4.4. The role of binders in SC
    • 1.4.5. Natural cellulose in ionic liquids electrode manufacturing process
    • 1.4.6. Natural cellulose in ionic liquids electrode manufacturing process

2. SUPERCAPACITORS MAIN COMPETITION: LITHIUM TITANATE BATTERIES

  • 2.1.1. Battery company: Toshiba
  • 2.1.2. Features of Toshiba's SCIB
  • 2.1.3. Production plant for Toshiba's SCIB
  • 2.1.4. Toshiba R&D activities
  • 2.1.5. Graphene - LTO anode Improvement
  • 2.2. Hybrid Supercapacitors, Supercabatteries or Asymmetric Supercapacitors
    • 2.2.1. Nomenclature
    • 2.2.2. Supercapacitors and hybrid supercapacitors
    • 2.2.3. Nano hybrid capacitor (NHC)
    • 2.2.4. Supercapacitors evolution
    • 2.2.5. Ultrabattery
    • 2.2.6. Hybrid SC-Supercabatteries can use aqueous or non aqueous electrolytes
    • 2.2.7. European perspective on supply chain in supercapacitors
    • 2.2.8. Why do SC manufacturers bother in preparing the active material?
    • 2.2.9. Manufacturing development trends
    • 2.2.10. Supercapacitors Cost Structure
    • 2.2.11. Cost Structure Supercapacitors
    • 2.2.12. Supercapacitors cost reduction is far quicker than lithium ion batteries
    • 2.2.13. How to price energy/power devices?
    • 2.2.14. Hybrid ESS = SC + Battery

3. MARKETS FOR SUPERCAPACITORS

  • 3.1.1. Three main market segments
  • 3.1.2. Market segmentation by farad/cell
  • 3.1.3. Why SC in Energy Systems? Energy management in fluctuating power demand systems
  • 3.2. Supercapacitors in electronics
    • 3.2.1. A role for supercapacitors in smart and portable devices
    • 3.2.2. Key enabling technologies and systems
    • 3.2.3. Why Wireless Sensor Networks?
    • 3.2.4. Wireless Sensor Networks and IoT
    • 3.2.5. Critical infrastructure monitoring
    • 3.2.6. Wireless Sensor Node
    • 3.2.7. Why SC in Wireless Sensor Networks?
    • 3.2.8. WSN operational profile
    • 3.2.9. Why SC in Wireless Sensor Networks?
    • 3.2.10. And that has an impact in power demand profiles...
    • 3.2.11. They are getting thinner
    • 3.2.12. Why Micro-SC in WSN and other consumer electronics? Commercial products have reduced footprint now, but not enough
    • 3.2.13. Energy harvesting with SC
    • 3.2.14. Microsupercapacitors
    • 3.2.15. Manufacturing techniques are key to low cost
  • 3.3. Supercapacitors in Transportation
    • 3.3.1. Supercapacitors are replacing some batteries - expensive and little energy stored but...
    • 3.3.2. Supercapacitors have a role in each stage of powertrain electrification
    • 3.3.3. Start-stop systems - mild hybrids
    • 3.3.4. Energy recovery - mild hybrid
    • 3.3.5. Continental - success story
    • 3.3.6. Power at the point of demand
    • 3.3.7. Electronic controlled brake
    • 3.3.8. Mazda Japan and Bollore Pininfarina France/Italy
    • 3.3.9. Supercapacitor replaces battery across fuel cell
    • 3.3.10. Bombardier light rail and others use supercapacitor energy harvesting
    • 3.3.11. Rail: two ways of applying supercapacitors
    • 3.3.12. Wayside Rail HESS: Frequency Regulation and Energy Efficiency
    • 3.3.13. Longer life, more reliable, better response. Completely replaces battery in pure electric Sinautec bus
    • 3.3.14. Supercapacitors assist fast charging in ABB's TOSA bus charging system in Geneva
    • 3.3.15. Fast charge-discharge
    • 3.3.16. Fast charge-discharge
    • 3.3.17. Hybrid Bus - USA
    • 3.3.18. CSR China - Hybrid Electric Bus
    • 3.3.19. Hybrid bus - series hybrid
    • 3.3.20. Hybrid bus - parallel hybrid
    • 3.3.21. Modular flexible hybrid drives
    • 3.3.22. Sports cars use supercaps
    • 3.3.23. The result - the Toyota Yaris Hybrid-R
    • 3.3.24. Supercapacitors applications in aerospace
    • 3.3.25. Wireless Sensor Networks - Aviation
    • 3.3.26. Energy harvesting and storage for structural health monitoring
  • 3.4. Supercapacitors in industrial applications
    • 3.4.1. Emergency backup when the electrics fail: more likely to work than a battery
    • 3.4.2. Enercon E-48
    • 3.4.3. SC in Lifting operations + Energy Recovery from Short Trips
    • 3.4.4. Forklifts
    • 3.4.5. Super Capacitor Heavy-duty Port Towing Vehicle produced by Aowei Certified by MIIT
    • 3.4.6. Supercapacitors in port cranes
    • 3.4.7. Supercapacitors in industrial applications
    • 3.4.8. Building Elevators
    • 3.4.9. Smart Metering - AMR
    • 3.4.10. Handheld products - fast charging
  • 3.5. Supercapacitors in grid applications
    • 3.5.1. Grid Energy Storage
    • 3.5.2. Uses of Energy Storage - UCAP and HESS
    • 3.5.3. Hybrid Energy Storage Systems - performance benefits
    • 3.5.4. The role of SC in grid
    • 3.5.5. Duke Energy Rankin Substation: PV Intermittency Smoothing + Load Shifting
    • 3.5.6. Smoothing Wind Farm Power Output
    • 3.5.7. Ireland Microgrid Test Bed

4. STATE OF THE SUPERCAPACITOR MARKET 2015

  • 4.1.1. Competitive Landscape
  • 4.1.2. Pick of the news in 2015
  • 4.1.3. Challenges for SC in Automotive
  • 4.1.4. Response from the industry
  • 4.1.5. Nippon Chemi-Con development plan
  • 4.1.6. Company performance 2015 vs 2014
  • 4.1.7. Company performance YTD 2015 vs 2014
  • 4.1.8. The great shake out in China
  • 4.1.9. Chinese supercapacitor market
  • 4.1.10. European Companies developments
  • 4.1.11. European Companies developments
  • 4.1.12. Maxwell Technologies news June 15 2016
  • 4.1.13. Maxwell Technologies 15 Jun 2016 shareholders meeting announcements
  • 4.1.14. Outlook Nippon Chemicon 2016-2015
  • 4.1.15. Application timeline
  • 4.1.16. Existing Automotive Applications details
  • 4.1.17. Existing non-automotive applications
  • 4.1.18. Medium term applications
  • 4.1.19. Supercapacitor in the automotive sector
  • 4.1.20. OEM's point of view
  • 4.1.21. Supercapacitors in Automotive Sector
  • 4.1.22. SC progress in Automotive up to date
  • 4.1.23. Focus of supercapacitor manufacturers
  • 4.1.24. 66 manufacturers and putative manufacturers of supercapacitors/ superbatteries % by continent
  • 4.1.25. Market Development - Number of Players
  • 4.1.26. Supercapacitors in the future
  • 4.1.27. Experimental supercapacitor car trunk lid
Back to Top