Cover Image
市場調查報告書

透明導電性薄膜 (TCF)的各種市場·技術·市場預測:2016-2026年

Transparent Conductive Films (TCF) 2016-2026: Forecasts, Markets, Technologies

出版商 IDTechEx Ltd. 商品編碼 235007
出版日期 內容資訊 英文 143 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
透明導電性薄膜 (TCF)的各種市場·技術·市場預測:2016-2026年 Transparent Conductive Films (TCF) 2016-2026: Forecasts, Markets, Technologies
出版日期: 2016年06月01日 內容資訊: 英文 143 Slides
簡介

本報告提供透明導電性薄膜(TCF)的各種技術及市場調查,提供您ITO薄膜,ITO玻璃,奈米銀線,各種金屬網格,石墨烯,奈米碳管,PEDOT等主要技術的特徵,性能,優點/缺點,技術開發趨勢,主要企業與所做的努力,並彙整各用途·技術區分別市場分析及10年市場預測,主要企業的採訪及簡介等資料。

第1章 摘要整理

第2章 技術分析

  • ITO玻璃分析:效能·製造·規定
  • LCD顯示器的ITO玻璃
  • ITO薄膜分析:效能·製造·市場趨勢
  • 繁榮與蕭條週期
  • ITO薄膜的缺點
  • 銦價格的變動性·來自單一供應商的採購風險
  • ITO-on-PET:設備製造能力
  • 可配合高溫的無銦金屬氧化物
  • 奈米銀線透明導電性薄膜:原理
  • 奈米銀線透明導電性薄膜:成長·累積
  • 奈米銀線透明導電性薄膜:效能水準和提供價值
  • 奈米銀線透明導電性薄膜:彈性
  • 奈米銀線透明導電性薄膜:霧值·遷移·單一供應商採購的風險
  • Ag NW·ITO的製造成本比較
  • 奈米銀線透明導電性薄膜:現有的商用用途市場
  • 奈米銀線透明導電性薄膜:最新的市場趨勢·新聞
  • Ag奈米銀線的主要企業
  • 金屬網格透明導電性薄膜:運行原理
  • DPT金屬網格透明導電性薄膜:效能
  • DPT金屬網格透明導電性薄膜:主要的缺點
  • 主要企業
  • 壓紋/壓印金屬網格TCF
  • Uni-Pixel的金屬網格效能
  • Unipixel和商用產品
  • 壓紋金屬網格的產量上課題
  • Conductive Inkjet Technology的照片模式金屬網格TCF
  • UniPixelAteml:資產
  • O-Film的金屬網格TCF技術
  • MNTech的金屬網格TCF技術
  • ITRI對透明導電性薄膜的方法
  • 柔韌的金屬網格TCF
  • 金屬網格:成本明細和產量
  • SWOT分析:壓紋金屬網格TCF
  • 主要企業
  • SWOT分析:照片模式金屬網格TCF
  • 主要企業
  • BASICMWCNT產品的標準
  • BASICSWCNT產品的標準
  • CNT的說明製造能力:供應商·CNT類別
  • 奈米碳管透明導電性薄膜:效能
  • 奈米碳管透明導電性薄膜:商用薄膜的效能
  • 奈米碳管透明導電性薄膜:適合目錄
  • 奈米碳管透明導電性薄膜:機械性彈性
  • 奈米碳管透明導電性薄膜:主要的差異化因素的拉伸膜性
  • 由於CNT的3D觸控感測surface範例
  • 主要企業
  • 石墨烯:背景
  • 石墨烯製造各種的手法
  • 石墨烯的形態的定量的製圖
  • CVD
  • 轉印的課題
  • CVD石墨烯的製造成本
  • 石墨烯 透明導電性薄膜:效能水準
  • 石墨烯 透明導電性薄膜:彈性
  • 石墨烯 透明導電性薄膜:薄度·阻障層級
  • 石墨烯TCF的SWOT分析
  • 主要企業
  • PEDOT/PSS
  • PEDOT/PSS效能的大幅度改善
  • PEDOT/PSS的穩定性·空間的均一性
  • PEDOT/PSS TCF的使用案例
  • 主要企業
  • 細線TCF技術
  • 細線大型觸控顯示器的市場上業績
  • SWOT分析:微線TCF
  • CimaTech的自組裝奈米粒子技術
  • 各種TFC技術的定量的基準
  • 技術比較等

第3章 各種用途

  • 消費者取向電子設備的出貨預測
  • 智慧型手機的成長
  • 中國品牌的市場佔有率
  • 智慧型手機市場片斷化
  • 各種電容式觸控架構
  • 各種觸控螢幕架構的佔有率
  • 大螢幕觸控顯示器用光觸控系統
  • 各種光觸控技術的評估
  • OLED照明市場
  • 最新的OLED照明市場上各種發表
  • OLED照明的集積基板
  • 有機PV的市場預測
  • 有機PV的最新消息
  • 彈性OLED顯示器的各部門市場預測
  • OLED顯示器的收益:各技術
  • 智慧窗戶的設備製造能力:技術·各企業
  • 智慧窗戶市場預測

第4章 市場預測

  • 用來預測的TCF薄膜價格
  • 透明導電層的10年預測:各技術
  • 透明導電性薄膜的10年預測:各技術
  • 透明導電性玻璃的10年預測:各技術
  • ITO薄膜的10年預測:各用途
  • ITO玻璃的10年預測:各用途
  • 奈米銀線TCF的10年預測:各用途
  • 金屬網格TCF的10年預測:各用途
  • PEDOT TCF的10年預測:各用途

第5章 企業採訪

  • Arkema (法國)
  • Blue Nano (美國)
  • Bluestone Global Tech (美國)
  • C3Nano
  • Cambrios (美國)
  • Canatu (芬蘭)
  • Carestream Advanced Materials (美國)
  • Charmtron Inc
  • Cima Nanotech (美國)
  • ClearJet (以色列)
  • 大日本印刷 (日本)
  • Displax Interactive Systems (葡萄牙)
  • Epigem Ltd
  • E-Fly Optoelectronic Materials Co., Ltd.
  • Goss International Americas (美國)
  • Graphene Frontiers
  • Graphene Laboratories (美國)
  • Graphene Square
  • Graphenea
  • Haydale Ltd
  • Heraeus (德國)
  • 來也
  • Komori
  • Multitaction
  • Nanogap (西班牙)
  • NanoIntegris
  • Nanomade
  • Neonode
  • OCSiAl
  • O-Film (中國)
  • PolyIC (德國)
  • Poly-Ink (法國)
  • Promethean Particles
  • Rolith (美國)
  • Seashell Technology (美國)
  • 昭和電工 (日本)
  • Showa Denko K.K
  • Sinovia Technologies (美國)
  • SouthWest NanoTechnologies (美國)
  • Toppan Printing
  • UniPixel (美國)
  • University of Exeter (英國)
  • Visual Planet (英國)
  • WuxiGraphene Film
  • XinNano Materials (台灣)
  • Zytronic (英國)
  • Zyvex

第6章 企業簡介

  • Agfa-Gevaert (比利時)
  • 3M (美國)
  • Atmel (美國)
  • C3Nano (美國)
  • Chasm Technologies (美國)
  • Cheil Industries (韓國)
  • Chimei Innolux (台灣)
  • CHISSO (日本)
  • Conductive Inkjet Technologies (Carlco) (美國)
  • Dontech Inc. (美國)
  • Duke University (美國)
  • Eastman Kodak (美國)
  • Eikos (美國)
  • ELK (韓國)
  • Evaporated Coatings Inc. (美國)
  • Evonik (德國)
  • FUJIFILM (日本)
  • 富士通 (日本)
  • gunze (日本)
  • 日立化成 (日本)
  • Holst Center (荷蘭)
  • Iljin Display (韓國)
  • Institute of Chemical and Engineering Sciences (ICES) (新加坡)
  • Join Well Technology Company Ltd. (台灣)
  • J-Touch (台灣)
  • KAIST (韓國)
  • 小諸 (日本)
  • KPT Shanghai Keyan Phosphor Technology Co. Ltd. (中國)
  • Lee Tat Industrial Development (LTI) Ltd (香港)
  • LG Chem (韓國)
  • Maxfilm (韓國)
  • Mianyang Prochema Plastics Co., Ltd. (中國)
  • Mirae/MNTec (韓國)
  • 三井物產 (日本)
  • Mutto Optronics (中國)
  • 長瀨產業 (日本)
  • Nanopyxis (韓國)
  • 產業技術綜合研究所 (AIST) (日本)
  • National University of Singapore (NUS) (新加坡)
  • Nicanti (芬蘭)
  • 日東電工 (日本)
  • Nouvo Film
  • 尾巴池子工業 (日本)
  • 王子製紙集團 (日本)
  • Panipol Ltd. (芬蘭)
  • Perceptive Pixel (美國)
  • Polychem UV/EB (台灣)
  • Power Booster (中國)
  • Rice University (美國)
  • Samsung Electronics (韓國)
  • Sang Bo Corporation (SBK) (韓國)
  • 積水奈米大衣科技 (日本)
  • Sheldahl (美國)
  • Sigma-Aldrich (美國)
  • SONY (日本)
  • 住友金屬礦山 (日本)
  • 鈴寅 (日本)
  • TDK (日本)
  • Teijin Kasei America, Inc. / Teijin Chemical (美國)
  • Top Nanosys (韓國)
  • Toray Industries薄膜加工 (TAF) (日本)
  • Toyobo (日本)
  • UCLA (美國)
  • Unidym (美國)
  • University of Michigan (美國)
  • VisionTek Systems Ltd. (英國)
  • Young Fast Optoelectronics (台灣)

關於IDTECHEX RESEARCH REPORTS AND CONSULTING

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

ITO alternative films will reach a combined market value of $220m in 2026.

This report provides the most comprehensive and authoritative view of the transparent conductive film (TCF) industry. In particular, it provides:

  • Market forecasts: Granular ten-year market forecasts segmented by application and technology. The forecasts are provided in value and area.
  • Technology assessment: Detailed, data-driven and insightful analysis of all the existing and emerging transparent conducting layer technologies including ITO film, ITO glass, silver nanowires, silver nanoparticles, various metal mesh technologies, graphene, carbon nanotubes, PEDOT, and others
  • Application analysis: Market size and trend analysis of end applications such mobile phones, tablets, notebooks, smart watches, standalone touch monitors, AiOs, OLED lighting, emerging thin film PV such as OPV, DSSC and Perovskites, etc
  • Company profiles: Critical and interview-based assessment and SWOT analysis of more than 40 companies active in the TCF industry. Coverage of 70 other players in the TCF value chain.

This report is based upon years of research as we have been tracking and analysing TCF industry since 2008. Our team has interviewed and profiled all the key users and producers of various types of TCF technologies.

We have attended countless relevant events globally and organized our own sessions on the topic since 2008 in Europe, Asia, and the USA. Our team has also delivered around 20 masterclass on the topic in different continents.

We have also completed more than 10 major consulting projects helping our customers profit from changes in this sector. Our work has covered investment due diligence, custom market research, product positioning, customer development, and growth strategy.

This market study is the distilled and processed result of our continuous endeavours. Each year we have learned more about the market trends, the key questions, latest prices, etc, and fine-tuned our analysis, insight and forecasts to reflect the latest.

Strong growth for ITO alternatives after the consolidation period

The TCF industry has recently experienced sluggish growth. The industry has transitioned from being supply-limited to being commoditized and demand-limited with supply currently outstripping demand.

Faced with the threat of alternatives and increased supply, the incumbents have decided to protect their market share by slashing their prices. This has upended the previously more-for-less value position of some alternative technologies.

This has triggered a consolidation period, adversely affected existing ITO film manufactures as well as alternative suppliers. This process has begun to take its high-profile victims but will have likely reached near the end of its usefulness as price falls are likely to have largely plateaued. We believe that the industry will have emerged from this phase by the end of the year.

The ITO alternative landscape has for long been too technologically crowded. Metal mesh and silver nanowires (despite the recent feedbacks) have emerged as the leading alternatives. They have raised the performance bar in the market. They are positioned as sustaining technologies in that they further the performance of TCFs along well-established figures-of-merit.

The challenge has been that the incumbent has proven good enough and thus hard to displace in most existing applications therefore alternatives are having to patiently wait for the emergence of new application areas such as large-area touch, flexible applications, etc. The value chain as well as the business case for many of these applications is finally coming together, opening the door for new TCF technologies.

Other alternatives now seek niche markets where their non-traditional figures-of-merit such as ultra-flexibility or stretchability count. In particular, 3D-shaped touch-sensing surfaces are emerging a market opportunity for TCF technologies that can be deposited flat and then thermoformed/moulded into a 3D shape.

Despite the recent setbacks, IDTechEx Research assesses that ITO alternatives are here to stay. They have matured as technologies and have already begun market penetration. Specific companies may come and go but the technologies will achieve market growth after a healthy period of valuation correction.

Indeed, we forecast that ITO alternatives will sell more than $220m in 2026 based on the latest and our projected film prices, thus achieving a 10-year CAGR for nearly 40%. We anticipate that nearly 65% of the growth will stem from applications which today make up only 3% of overall TCF/G sales.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

2. TECHNOLOGY ASSESSMENT

  • 2.1. ITO glass assessment: performance, manufacture & limitations
  • 2.2. ITO glass in LCD displays
  • 2.3. ITO film assessment: performance, manufacture and market trends
  • 2.4. The Boom and Bust Cycle
  • 2.5. ITO film shortcomings: flexibility
  • 2.6. ITO film shortcomings: limited sheet resistance
  • 2.7. ITO film shortcomings: index matching
  • 2.8. ITO film shortcomings: thinness
  • 2.9. ITO film shortcomings: price falls and commoditization
  • 2.10. Indium prices fluctuations and single-supply-risk
  • 2.11. Recycling comes to the rescue?
  • 2.12. ITO-on-PET production capacity
  • 2.13. Indium-free metal oxides win in high temperature applications
  • 2.14. Silver nanowire transparent conductive films: principles
  • 2.15. Silver nanowire transparent conductive films: growth and deposition
  • 2.16. Silver nanowire transparent conductive films: performance levels and value proposition
  • 2.17. Silver nanowire transparent conductive films: flexibility
  • 2.18. Silver nanowire transparent conductive films: haze, migration, and single supplier risk
  • 2.19. Comparing manufacturing cost of Ag NW and ITO
  • 2.20. Silver nanowire transparent conductive films: existing commercial applications on the market
  • 2.21. Silver nanowire transparent conductive films: latest market developments and news
  • 2.22. Key Ag silver nanowire players
  • 2.23. Metal mesh transparent conductive films: operating principles
  • 2.24. Direct printed metal mesh transparent conductive films: performance
  • 2.25. Direct printed metal mesh transparent conductive films: major shortcomings
  • 2.26. Key players
  • 2.27. Embossing/Imprinting metal mesh TCFs
  • 2.28. Uni-Pixel's metal mesh performance
  • 2.29. Unipixel in commercial products
  • 2.30. Yield issues for embossed metal mesh?
  • 2.31. Conductive Inkjet Technology's photo-patterned metal mesh TCF
  • 2.32. Ateml offloads assets to UniPixel
  • 2.33. O-Film's metal mesh TCF technology
  • 2.34. MNTech's metal mesh TCF technology
  • 2.35. ITRI's approach to transparent conducting films
  • 2.36. Metal mesh TCF is flexible
  • 2.37. Cost breakdown of metal mesh and yield
  • 2.38. SWOT analysis on embossed metal mesh TCFs
  • 2.39. Key players
  • 2.40. Fujifilm's photo-patterned metal mesh TCF
  • 2.41. Toppan Printing's copper mesh transparent conductive films
  • 2.42. Dai Nippon Printing's transparent conductive film technology
  • 2.43. Rolith's novel photo patterning technique
  • 2.44. 3M's photo-patterned metal mesh TCF
  • 2.45. SWOT analysis on photo patterned metal mesh TCFs
  • 2.46. Key players
  • 2.47. Carbon nanotubes: background
  • 2.48. Basic MWCNT product metrics
  • 2.49. Basic SWCNT product metrics
  • 2.50. CNT production capacity by supplier and CNT type
  • 2.51. Carbon nanotube transparent conductive films: performance
  • 2.52. Carbon nanotube transparent conductive films: performance of commercial films on the market
  • 2.53. Carbon nanotube transparent conductive films: matched index
  • 2.54. Carbon nanotube transparent conductive films: mechanical flexibility
  • 2.55. Carbon nanotube transparent conductive films: stretchability as a key differentiator for in-mould electronics
  • 2.56. Example of 3D touch-sensing surface with CNTs
  • 2.57. Key players
  • 2.58. Graphene: background
  • 2.59. Numerous ways of making graphene
  • 2.60. Quantitative mapping of graphene morphologies on the market
  • 2.61. Chemical vapour deposition
  • 2.62. The transfer challenge
  • 2.63. Roll-to-roll transfer of CVD graphene
  • 2.64. Novel methods for transferring CVD graphene
  • 2.65. Sony's approach to transfer of CVD process
  • 2.66. Sony's CVD graphene approach
  • 2.67. Wuxi Graphene Film Co's CVD graphene progress
  • 2.68. Wuxi Graphene Film Co's CVD graphene progress
  • 2.69. Production cost of CVD graphene
  • 2.70. Direct CVD graphene growth on an insulating substrate?
  • 2.71. Graphene transparent conductive film: performance levels
  • 2.72. Doping as a strategy for improving graphene TCF performance
  • 2.73. Be wary of extraordinary results for graphene
  • 2.74. Graphene transparent conducting films: flexibility
  • 2.75. Graphene transparent conducting films: thinness and barrier layers
  • 2.76. SWOT analysis on graphene TCFs
  • 2.77. Key players
  • 2.78. PEDOT: PSS
  • 2.79. Patterning PEDOT: PSS
  • 2.80. Performance of PEDOT: PSS has drastically improved
  • 2.81. PEDOT: PSS is now on a par with ITO-on-PET
  • 2.82. PEDOT: PSS is mechanically flexible
  • 2.83. PEDOT: PSS is stretchable and can be thermoformed
  • 2.84. Stability and spatial uniformity of PEDOT: PSS
  • 2.85. Use case examples of PEDOT: PSS TCFs
  • 2.86. Key players
  • 2.87. Fine wire TCF technology
  • 2.88. Performance of fine wire large-sized touch displays on the market
  • 2.89. SWOT analysis on micro wire TCFs
  • 2.90. CimaTech's self-assembled nanoparticle technology
  • 2.91. Examples of Cima Nanotech's technology
  • 2.92. ClearJet's inkjet printed nanoparticle-based TCFs
  • 2.93. E-Fly Corporation's nanoparticle-based TCFs
  • 2.94. Quantitative benchmarking of different TCF technologies
  • 2.95. Technology comparison

3. APPLICATIONS

  • 3.1. Consumer electronic device shipment forecasts
  • 3.2. Smart phones have been growing in size
  • 3.3. Growth in smart phones to come in the low-cost brackets
  • 3.4. Chinese brands are stealing market share in China
  • 3.5. Smart phone market is highly diverse and fragmented
  • 3.6. Different capacitive touch architectures
  • 3.7. Share of different touch screen architectures
  • 3.8. Optical touch systems for large area touch displays
  • 3.9. Assessing different optical touch technologies
  • 3.10. OLED lighting market
  • 3.11. Latest OLED lighting market announcements
  • 3.12. Integrated substrates for OLED lighting
  • 3.13. Market Forecast for Organic photovoltaics
  • 3.14. Latest news on organic photovoltaics
  • 3.15. Segmented market forecast for flexible OLED displays
  • 3.16. OLED display revenue by technology
  • 3.17. Smart window production capacity by technology & player
  • 3.18. Smart window market projection

4. MARKET FORECASTS

  • 4.1. TCF film prices used in our projections
  • 4.2. Ten-year technology-segmented transparent conducting layer forecasts in $
  • 4.3. Ten-year technology-segmented transparent conducting film forecasts in area
  • 4.4. Ten-year technology-segmented transparent conducting glass forecasts in area
  • 4.5. Ten-year application-segmented for ITO films
  • 4.6. Ten-year application-segmented for ITO glass
  • 4.7. Ten-year application-segmented for silver nanowire TCFs
  • 4.8. Ten-year application-segmented for metal mesh TCFs
  • 4.9. Ten-year application-segmented for PEDOT TCFs

5. COMPANY INTERVIEWS

  • 5.1. Arkema, France
  • 5.2. Blue Nano, USA
  • 5.3. Bluestone Global Tech, USA
  • 5.4. C3Nano
  • 5.5. Cambrios, USA
  • 5.6. Canatu, Finland
  • 5.7. Carestream Advanced Materials, USA
  • 5.8. Charmtron Inc
  • 5.9. Cima Nanotech, USA
  • 5.10. ClearJet, Israel
  • 5.11. Dai Nippon Printing, Japan
  • 5.12. Displax Interactive Systems, Portugal
  • 5.13. Epigem Ltd
  • 5.14. E-Fly Optoelectronic Materials Co., Ltd.
  • 5.15. Goss International Americas, USA
  • 5.16. Graphene Frontiers
  • 5.17. Graphene Laboratories, USA
  • 5.18. Graphene Square
  • 5.19. Graphenea
  • 5.20. Haydale Ltd
  • 5.21. Heraeus, Germany
  • 5.22. Kimoto
  • 5.23. Komori Corporation
  • 5.24. Multitaction
  • 5.25. Nanogap, Spain
  • 5.26. NanoIntegris
  • 5.27. Nanomade
  • 5.28. Neonode
  • 5.29. OCSiAl
  • 5.30. O-Film, China
  • 5.31. PolyIC, Germany
  • 5.32. Poly-Ink, France
  • 5.33. Promethean Particles
  • 5.34. Rolith, USA
  • 5.35. Seashell Technology, USA
  • 5.36. Showa Denko, Japan
  • 5.37. Showa Denko K.K
  • 5.38. Sinovia Technologies, USA
  • 5.39. SouthWest NanoTechnologies, USA
  • 5.40. Toppan Printing
  • 5.41. UniPixel, USA
  • 5.42. University of Exeter, UK
  • 5.43. Visual Planet, UK
  • 5.44. Wuxi Graphene Film
  • 5.45. XinNano Materials, Taiwan
  • 5.46. Zytronic, UK
  • 5.47. Zyvex

6. COMPANY PROFILES

  • 6.1. Agfa-Gevaert, Belgium
  • 6.2. 3M, USA
  • 6.3. Atmel, USA
  • 6.4. C3Nano, USA
  • 6.5. Chasm Technologies, USA
  • 6.6. Cheil Industries, South Korea
  • 6.7. Chimei Innolux, Taiwan
  • 6.8. Chisso Corp., Japan
  • 6.9. Conductive Inkjet Technologies (Carlco), USA
  • 6.10. Dontech Inc., USA
  • 6.11. Duke University, USA
  • 6.12. Eastman Kodak, USA
  • 6.13. Eikos, USA
  • 6.14. ELK, South Korea
  • 6.15. Evaporated Coatings Inc., USA
  • 6.16. Evonik, Germany
  • 6.17. Fujifilm Ltd, Japan
  • 6.18. Fujitsu, Japan
  • 6.19. Gunze Ltd, Japan
  • 6.20. Hitachi Chemical, Japan
  • 6.21. Holst Center, Netherlands
  • 6.22. Iljin Display, South Korea
  • 6.23. Institute of Chemical and Engineering Sciences (ICES), Singapore
  • 6.24. Join Well Technology Company Ltd., Taiwan
  • 6.25. J-Touch, Taiwan
  • 6.26. KAIST, South Korea
  • 6.27. Komoro, Japan
  • 6.28. KPT Shanghai Keyan Phosphor Technology Co. Ltd., China
  • 6.29. Lee Tat Industrial Development (LTI) Ltd, Hong Kong
  • 6.30. LG Chem, South Korea
  • 6.31. Maxfilm, South Koera
  • 6.32. Mianyang Prochema Plastics Co., Ltd., China
  • 6.33. Mirae/MNTec, South Korea
  • 6.34. Mitsui & Co. (U.S.A.), Inc., Mitsui Ltd., Japan
  • 6.35. Mutto Optronics, China
  • 6.36. Nagase Corporation, Japan
  • 6.37. Nanopyxis, South Korea
  • 6.38. National Institute of Advanced Industrial Science and Technology (AIST), Japan
  • 6.39. National University of Singapore (NUS), Singapore
  • 6.40. Nicanti, Finland
  • 6.41. Nitto Denko, Japan
  • 6.42. Nouvo Film
  • 6.43. Oike & CO., Ltd., Japan
  • 6.44. Oji Paper Group, Japan
  • 6.45. Panipol Ltd., Finland
  • 6.46. Perceptive Pixel, USA
  • 6.47. Polychem UV/EB, Taiwan
  • 6.48. Power Booster, China
  • 6.49. Rice University, USA
  • 6.50. Samsung Electronics, South Korea
  • 6.51. Sang Bo Corporation (SBK), South Korea
  • 6.52. Sekisui Nano Coat Technology Ltd., Japan
  • 6.53. Sheldahl, USA
  • 6.54. Sigma-Aldrich, USA
  • 6.55. Sony Corporation, Japan
  • 6.56. Sumitomo Metal Mining Co., Inc., Japan
  • 6.57. Suzutora, Japan
  • 6.58. TDK, Japan
  • 6.59. Teijin Kasei America, Inc. / Teijin Chemical, USA
  • 6.60. Top Nanosys, South Korea
  • 6.61. Toray Advanced Film (TAF), Japan
  • 6.62. Toyobo, Japan
  • 6.63. UCLA, USA
  • 6.64. Unidym, USA
  • 6.65. University of Michigan, USA
  • 6.66. VisionTek Systems Ltd., UK
  • 6.67. Young Fast Optoelectronics, Taiwan

IDTECHEX RESEARCH REPORTS AND CONSULTING

FIGURES

  • 6.1. Typical properties on PET with bar coater
  • 6.2. Key performance data characteristics 3M's metal mesh TCFs
  • 6.3. Yielded cost per unit area of TCF for touch panel applications
  • 6.4. Tiny copper wires can be built in bulk and then "printed" on a surface to conduct current, transparently.
  • 6.5. Eastman Kodak HCF Film
  • 6.6. Opportunity for PEDOT in the Display industry
  • 6.7. Performance of PEDOT formulation from Eastman Kodak versus ITO
  • 6.8. CNT Ink Production Process
  • 6.9. Target application areas of Eikos
  • 6.10. Transmittance (%) as a function of wavelength (nm) for organic conductive polymers and ITO.
  • 6.11. Comparison of organic conductive polymers and configuration of the developed organic conductive polymer film
  • 6.12. Gunze's flexible display, presented early 2009
  • 6.13. Picture and pattern of transparent thermally conductive film
  • 6.14. Efficiency of TCF vs cell size
  • 6.15. Indium migration vs other TCFs
  • 6.16. A schematic giving insight into MNTech's manufacturing process and a table outlining performance levels
  • 6.17. Ga: ZnO films on a glass panel with the inventors and scanning electron images of 3D transparent conducting electrodes
  • 6.18. The owners of Nicanti
  • 6.19. Nicanti Printaf project
  • 6.20. Transparent conductive film - ELECRYSTA
  • 6.21. Sales and operating profits for Nitto Denko
  • 6.22. Nitto Denko's product offerings for displays including ITO film
  • 6.23. Transparent conductive film using organic semiconductors
  • 6.24. TCF solutions from Panipol
  • 6.25. Polychem PEDOT Polymer Coating
  • 6.26. Patterned Sample by the New Technology
  • 6.27. JEFF FITLOW -Yu Zhu, a postdoctoral researcher at Rice University, holds a sample of a transparent electrode that merges graphene and a fine aluminum grid
  • 6.28. A hybrid material that combines a fine aluminum mesh with a single-atom-thick layer of graphene
  • 6.29. An electron microscope image of a hybrid electrode developed at Rice University
  • 6.30. Roll-to-roll CVD production of very large-sized flexible graphene films
  • 6.31. ITO-on-PET film stack
  • 6.32. FLECLEAR structure
  • 6.33. Teijin's ELECLEAR ITO film
  • 6.34. New metal grid TCF technology developed by Toray
  • 6.35. Etched metal mesh TCF technology developed by Toray
  • 6.36. CNT TCF technology developed by Toray
Back to Top