Cover Image
市場調查報告書

透明導電薄膜 (TCF) 各種市場、技術、市場預測:2017-2027年

Transparent Conductive Films (TCF) 2017-2027: Forecasts, Markets, Technologies

出版商 IDTechEx Ltd. 商品編碼 235007
出版日期 內容資訊 英文 192 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
透明導電薄膜 (TCF) 各種市場、技術、市場預測:2017-2027年 Transparent Conductive Films (TCF) 2017-2027: Forecasts, Markets, Technologies
出版日期: 2017年03月08日 內容資訊: 英文 192 Slides
簡介

本報告調查透明導電薄膜(TCF)的各種技術及市場,彙整ITO薄膜、ITO玻璃、銀奈米線、各種金屬網、石墨烯、碳奈米管、PEDOT等主要技術的特徵、性能、優缺點、技術開發趨勢,主要企業及其行動、按應用和技術區分分類之市場分析和10年市場予測,主要企業訪問及簡介等。

第1章 摘要整理

第2章 技術分析

  • ITO玻璃分析:性能、製造、限制
  • LCD顯示器中的ITO玻璃
  • ITO薄膜分析:性能、製造、市場趨勢
  • 超漲超跌循環
  • ITO薄膜缺點
  • 銦價格的波動性及單一供應採購風險
  • ITO-on-PET:生產能力
  • 可於高溫中應用的無銦金屬氧化物
  • 銀奈米線透明導電薄膜:原理
  • 銀奈米線透明導電薄膜:成長和沉積
  • 銀奈米線透明導電薄膜:性能等及與提供價值
  • 銀奈米線透明導電薄膜:柔軟性
  • 銀奈米線透明導電薄膜:Haze、Migration、單一供應商風險
  • Ag NW、ITO製造成本比較
  • 銀奈米線透明導電薄膜:既有商業應用市場
  • 銀奈米線透明導電薄膜:最新市場趨勢和新聞
  • Ag銀奈米線主要企業
  • 金屬網透明導電薄膜:運作原理
  • DPT金屬網透明導電薄膜:性能
  • DPT金屬網透明導電薄膜:主要缺點
  • 主要企業
  • 壓紋加工/銘印金屬網TCF
  • Uni-Pixel金屬網性能
  • Unipixel和商業產品
  • 壓紋加工金屬網的產率課題
  • Conductive Inkjet Technology圖像金屬網TCF
  • Ateml:投注資產至UniPixel
  • O-Film金屬網TCF技術
  • MNTech金屬網TCF技術
  • ITRI對透明導電薄膜的方法
  • 靈活的金屬網TCF
  • 金屬網:成本細項與產率
  • SWOT分析:壓紋加工金屬網TCF
  • 主要企業
  • SWOT分析:圖像金屬網TCF
  • 主要企業
  • 基礎MWCNT產品度量
  • 基礎SWCNT產品度量
  • CNT產能:按供應商、CNT類型
  • 碳奈米管透明導電薄膜:性能
  • 碳奈米管透明導電薄膜:商業薄膜性能
  • 碳奈米管透明導電薄膜:匹配指數
  • 碳奈米管透明導電薄膜:機械柔軟性
  • 碳奈米管透明導電薄膜:作為主要差異化因子的伸展性
  • CNT的3D觸摸感測表面實例
  • 主要企業
  • 石墨烯:背景
  • 石墨烯製造的多種方法
  • 石墨烯形態的定量的mapping
  • CVD
  • 轉移課題
  • CVD石墨烯製造成本
  • 石墨烯透明導電薄膜:性能水準
  • 石墨烯透明導電薄膜:柔軟性
  • 石墨烯透明導電薄膜:薄度、阻擋
  • 石墨烯TCF的SWOT分析
  • 主要企業
  • PEDOT/PSS
  • PEDOT/PSS性能的大幅提升
  • PEDOT/PSS安定性、空間分佈均勻度
  • PEDOT/PSS TCF使用案例
  • 主要企業
  • 細線TCF技術
  • 細線大型觸控顯示器市場實績
  • SWOT分析:微線TCF
  • CimaTech自主裝奈米粒子技術
  • 各種TFC技術的定量標竿
  • 技術比較、其他

第3章 各種應用

  • 消費電子設備出貨預測
  • 智慧型手機成長
  • 中國品牌市場佔比
  • 智慧型手機市場的碎片化
  • 各種靜電容量方式觸控架構
  • 各種觸控螢幕架構佔比
  • 大面積觸控顯示器之光學觸控系統
  • 各種光學觸控技術評估
  • OLED照明市場
  • 最新OLED照明市場的各種發表
  • OLED照明整合基板
  • 有機PV市場預測
  • 有機PV最新情報
  • 軟性OLED顯示器的按部門市場預測
  • OLED顯示器收益:按技術
  • 智慧窗戶設備製造能力:按技術、企業
  • 智慧窗戶市場預測

第4章 市場預測

  • 預測TCF薄膜價格
  • 透明導電層10年預測:按技術
  • 透明導電薄膜10年預測:按技術
  • 透明導電性玻璃10年預測:按技術
  • ITO薄膜10年預測:按應用
  • ITO玻璃10年預測:按應用
  • 銀奈米線TCF的10年預測:按應用
  • 金屬網TCF的10年預測:按應用
  • PEDOT TCF的10年預測:按應用

第5章 企業訪問

  • Arkema (法國)
  • Blue Nano (美國)
  • Bluestone Global Tech (美國)
  • C3Nano
  • Cambrios (美國)
  • Canatu (芬蘭)
  • Carestream Advanced Materials (美國)
  • Charmtron Inc
  • Cima Nanotech (美國)
  • ClearJet (以色列)
  • 大日本印刷 (日本)
  • Displax Interactive Systems (葡萄牙)
  • Epigem Ltd
  • E-Fly Optoelectronic Materials Co., Ltd.
  • Goss International Americas (美國)
  • Graphene Frontiers
  • Graphene Laboratories (美國)
  • Graphene Square
  • Graphenea
  • Haydale Ltd
  • Heraeus (德國)
  • Kimoto
  • Komori Corporation
  • Multitaction
  • Nanogap (西班牙)
  • NanoIntegris
  • Nanomade
  • Neonode
  • OCSiAl
  • O-Film (中國)
  • PolyIC (德國)
  • Poly-Ink (法國)
  • Promethean Particles
  • Rolith (美國)
  • Seashell Technology (美國)
  • 昭和電工 (日本)
  • Showa Denko K.K
  • Sinovia Technologies (美國)
  • SouthWest NanoTechnologies (美國)
  • Toppan Printing
  • UniPixel (美國)
  • University of Exeter (英國)
  • Visual Planet (英國)
  • WuxiGraphene Film
  • XinNano Materials (台灣)
  • Zytronic (英國)
  • Zyvex

第6章 企業簡介

  • Agfa-Gevaert (比利時)
  • 3M (美國)
  • Atmel (美國)
  • C3Nano (美國)
  • Chasm Technologies (美國)
  • Cheil Industries (韓國)
  • Chimei Innolux (台灣)
  • Chisso Corp. (日本)
  • Conductive Inkjet Technologies (Carlco) (美國)
  • Dontech Inc. (美國)
  • Duke University (美國)
  • Eastman Kodak (美國)
  • Eikos (美國)
  • ELK (韓國)
  • Evaporated Coatings Inc. (美國)
  • Evonik (德國)
  • Fujifilm Ltd (日本)
  • Fujitsu (日本)
  • Gunze Ltd (日本)
  • Hitachi Chemical (日本)
  • Holst Center (荷蘭)
  • Iljin Display (韓國)
  • Institute of Chemical and Engineering Sciences (ICES) (新加坡)
  • Join Well Technology Company Ltd. (台灣)
  • J-Touch (台灣)
  • KAIST (韓國)
  • Komoro (日本)
  • KPT Shanghai Keyan Phosphor Technology Co. Ltd. (中國)
  • Lee Tat Industrial Development (LTI) Ltd (香港)
  • LG Chem (韓國)
  • Maxfilm (韓國)
  • Mianyang Prochema Plastics Co., Ltd. (中國)
  • Mirae/MNTec (韓國)
  • 三井物產 (日本)
  • Mutto Optronics (中國)
  • 長瀨產業 (日本)
  • Nanopyxis (韓國)
  • 產業技術綜合研究所 (AIST) (日本)
  • National University of Singapore (NUS) (新加坡)
  • Nicanti (芬蘭)
  • 日東電工 (日本)
  • Nouvo Film
  • 尾池工業 (日本)
  • 王子製紙 (日本)
  • Panipol Ltd. (芬蘭)
  • Perceptive Pixel (美國)
  • Polychem UV/EB (台灣)
  • Power Booster (中國)
  • Rice University (美國)
  • Samsung Electronics (韓國)
  • Sang Bo Corporation (SBK) (韓國)
  • Sekisui Nano Coat Technology Ltd. (日本)
  • Sheldahl (美國)
  • Sigma-Aldrich (美國)
  • Sony Corporation (日本)
  • Sumitomo Metal Mining Co., Inc. (日本)
  • Suzutora (日本)
  • TDK (日本)
  • Teijin Kasei America, Inc. / Teijin Chemical (美國)
  • Top Nanosys (韓國)
  • Toray Advanced Film (TAF) (日本)
  • Toyobo (日本)
  • UCLA (美國)
  • Unidym (美國)
  • University of Michigan (美國)
  • VisionTek Systems Ltd. (英國)
  • Young Fast Optoelectronics (台灣)

IDTECHEX RESEARCH REPORTS AND CONSULTING

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

This report provides the most comprehensive and authoritative view of the transparent conductive film (TCF) industry. In particular, it provides:

Market forecasts: Granular ten-year market forecasts segmented by application and technology. The forecasts are provided in value and sqm area.

Technology assessment: Detailed, data-driven and insightful analysis of all the existing and emerging transparent conducting layer technologies including ITO film, ITO glass, silver nanowires, silver nanoparticles, various metal mesh technologies (photolithography, direct printing, embossing, hybrid, and so on), graphene, carbon nanotubes, PEDOT, and others.

Application analysis: Market size and trend analysis of end applications such mobile phones, tablets, notebooks, smart watches, standalone touch monitors, automotive touch screens by size, AiOs, OLED lighting, in-mold electronics, smart windows, and emerging thin film PV such as OPV, DSSC and perovskites.

Company profiles: Critical and interview-based assessment and SWOT analysis of more than 40 companies active in the TCF industry. Coverage of 70 other players in the TCF value chain.

This report is based upon years of research as we have been tracking and analysing TCF industry since 2008. In this time we have witnessed first-hand the rise and fall of technologies and companies, and correctly predicted the consolidation period of the past few years.

For our research, our team has interviewed and profiled all the key users and producers of various types of TCF technologies. Often we enjoy close relationships with the key industry players. Our team has also been independently analysing the markets for many existing and emerging target applications for TCFs for years. For example, we have produced market research reports and bespoke consulting projects on OLED lighting, wearable technology, in-mold electronics, smart windows, OPVs, DSSCs, perovskites, and touch screens. This enables us to assess the market from an application as well as technology point of view.

We have attended countless relevant events globally and organized our own sessions on the topic since 2008 in Europe, Asia, and the USA. Our team has also delivered around 20 masterclasses on the topic in different continents. We have also completed more than 12 major consulting projects helping our customers profit from changes in this sector. Our work has covered investment due diligence, custom market research, product positioning, customer development, and growth strategy.

This market study is the distilled and processed result of our continuous endeavours. Each year we have learned more about the market trends, the key questions, latest prices, etc, and fine-tuned our analysis, insight and forecasts to reflect the latest.

The transparent conductive film (TCF) industry will leave behind its years of sluggish grow to achieve rapid growth, serving a size of more than 60 million square meter (sqm) per year (glass based layers excluded) . Indeed, this industry is entering a new phase. Some ITO alternatives have matured, receiving increasing market adoption. Indeed, IDTechEx Research finds that ITO alternative TCFs will become $400+ market by 2027, although not all alternatives will benefit equally.

New market opportunities are emerging, changing the prospects of various technologies and increasing the demand overall in the coming years. In fact, IDTechEx Research forecasts that these new market opportunities will grow to represent nearly 45% of the total TCF market in 2027, up from <10% in 2017. The usefulness of the strategy of slashing prices to protect market share will have plateaued, bringing more stability to the market.

Transparent conductive film market forecast segmented by ITO and ITO alternatives. To see exact values or to understand granular technology split refer to the report. (dotted line): % share of new emerging applications relative to the total TCF market size. New applications represent a major growth opportunity

image1

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

2. TECHNOLOGY ASSESSMENT

  • 2.1. ITO glass assessment: performance, manufacture & limitations
  • 2.2. ITO glass in LCD displays
  • 2.3. ITO film assessment: performance, manufacture and market trends
  • 2.4. The Boom and Bust Cycle
  • 2.5. ITO film shortcomings: flexibility
  • 2.6. ITO film shortcomings: limited sheet resistance
  • 2.7. ITO film shortcomings: index matching
  • 2.8. ITO film shortcomings: thinness
  • 2.9. ITO film shortcomings: price falls and commoditization
  • 2.10. Indium prices fluctuations and single-supply-risk
  • 2.11. Recycling comes to the rescue?
  • 2.12. ITO-on-PET production capacity
  • 2.13. Indium-free metal oxides win in high temperature applications
  • 2.14. Silver nanowire transparent conductive films: principles
  • 2.15. Silver nanowire transparent conductive films: growth and deposition
  • 2.16. Silver nanowire transparent conductive films: performance levels and value proposition
  • 2.17. Silver nanowire transparent conductive films: flexibility
  • 2.18. Silver nanowire transparent conductive films: haze, migration, and single supplier risk
  • 2.19. Comparing manufacturing cost of Ag NW and ITO
  • 2.20. Silver nanowire transparent conductive films: existing commercial applications on the market
  • 2.21. Silver nanowire transparent conductive films: latest market developments and news
  • 2.22. Hitach Chemical's TCTF
  • 2.23. Key Ag silver nanowire players
  • 2.24. Metal mesh transparent conductive films: operating principles
  • 2.25. Direct printed metal mesh transparent conductive films: performance
  • 2.26. Direct printed metal mesh transparent conductive films: major shortcomings
  • 2.27. Key players
  • 2.28. Embossing/Imprinting metal mesh TCFs
  • 2.29. Uni-Pixel's metal mesh performance
  • 2.30. Unipixel in commercial products
  • 2.31. Yield issues for embossed metal mesh?
  • 2.32. Conductive Inkjet Technology's photo-patterned metal mesh TCF
  • 2.33. Ateml offloads assets to UniPixel
  • 2.34. O-Film's metal mesh TCF technology
  • 2.35. MNTech's metal mesh TCF technology
  • 2.36. ITRI's approach to transparent conducting films
  • 2.37. Metal mesh TCF is flexible
  • 2.38. Cost breakdown of metal mesh and yield
  • 2.39. SWOT analysis on embossed metal mesh TCFs
  • 2.40. Key players
  • 2.41. Fujifilm's photo-patterned metal mesh TCF
  • 2.42. Toppan Printing's copper mesh transparent conductive films
  • 2.43. Dai Nippon Printing's transparent conductive film technology
  • 2.44. Rolith's novel photo patterning technique
  • 2.45. 3M's photo-patterned metal mesh TCF
  • 2.46. Tanaka Metal's metal mesh technology
  • 2.47. LCY's metal mesh technology
  • 2.48. Screen Holding's metal mesh technology
  • 2.49. Consistent Materials' photoresist for metal mesh
  • 2.50. Asahi Kasei ultra-fine roll-to-roll imprinting
  • 2.51. Komura-Tech's gravure offset metal mesh printing
  • 2.52. SWOT analysis on photo patterned metal mesh TCFs
  • 2.53. Key players
  • 2.54. Carbon nanotubes: background
  • 2.55. Basic MWCNT product metrics
  • 2.56. Basic SWCNT product metrics
  • 2.57. CNT production capacity by supplier and CNT type
  • 2.58. Carbon nanotube transparent conductive films: performance
  • 2.59. Carbon nanotube transparent conductive films: performance of commercial films on the market
  • 2.60. Carbon nanotube transparent conductive films: matched index
  • 2.61. Carbon nanotube transparent conductive films: mechanical flexibility
  • 2.62. Carbon nanotube transparent conductive films: stretchability as a key differentiator for in-mould electronics
  • 2.63. Example of 3D touch-sensing surface with CNTs
  • 2.64. Example of wearable device using CNT
  • 2.65. Key players
  • 2.66. Graphene: background
  • 2.67. Numerous ways of making graphene
  • 2.68. Quantitative mapping of graphene morphologies on the market
  • 2.69. Chemical vapour deposition
  • 2.70. The transfer challenge
  • 2.71. Roll-to-roll transfer of CVD graphene
  • 2.72. Novel methods for transferring CVD graphene
  • 2.73. Sony's approach to transfer of CVD process
  • 2.74. Sony's CVD graphene approach
  • 2.75. Wuxi Graphene Film Co's CVD graphene progress
  • 2.76. Wuxi Graphene Film Co's CVD graphene progress
  • 2.77. Production cost of CVD graphene
  • 2.78. Direct CVD graphene growth on an insulating substrate?
  • 2.79. Graphene transparent conductive film: performance levels
  • 2.80. Doping as a strategy for improving graphene TCF performance
  • 2.81. Be wary of extraordinary results for graphene
  • 2.82. Graphene transparent conducting films: flexibility
  • 2.83. Graphene transparent conducting films: thinness and barrier layers
  • 2.84. SWOT analysis on graphene TCFs
  • 2.85. Key players
  • 2.86. PEDOT:PSS
  • 2.87. Patterning PEDOT:PSS
  • 2.88. Performance of PEDOT:PSS has drastically improved
  • 2.89. PEDOT:PSS is now on a par with ITO-on-PET
  • 2.90. PEDOT:PSS is mechanically flexible
  • 2.91. PEDOT:PSS is stretchable and can be thermoformed
  • 2.92. Stability and spatial uniformity of PEDOT:PSS
  • 2.93. Nippon Chemi-Con's polymeric transparent conductive film
  • 2.94. Commercial product using PEDOT:PSS
  • 2.95. Use case examples of PEDOT:PSS TCFs
  • 2.96. Key players
  • 2.97. Fine wire TCF technology
  • 2.98. Performance of fine wire large-sized touch displays on the market
  • 2.99. SWOT analysis on micro wire TCFs
  • 2.100. CimaTech's self-assembled nanoparticle technology
  • 2.101. Examples of Cima Nanotech's technology
  • 2.102. ClearJet's inkjet printed nanoparticle-based TCFs
  • 2.103. E-Fly Corporation's nanoparticle-based TCFs
  • 2.104. Quantitative benchmarking of different TCF technologies
  • 2.105. Technology comparison

3. APPLICATIONS

  • 3.1. Consumer electronic device shipment forecasts
  • 3.2. Smart phones have been growing in size
  • 3.3. Growth in smart phones to come in the low-cost brackets
  • 3.4. Chinese brands are stealing market share in China
  • 3.5. Smart phone market is highly diverse and fragmented
  • 3.6. Different capacitive touch architectures
  • 3.7. Share of different touch screen architectures
  • 3.8. Optical touch systems for large area touch displays
  • 3.9. Assessing different optical touch technologies
  • 3.10. Assessing different optical touch technologies
  • 3.11. Metal mesh in large area capacitive touch screens
  • 3.12. Metal mesh in large area capacitive touch screens
  • 3.13. OLED lighting market
  • 3.14. Latest OLED lighting market announcements
  • 3.15. Integrated substrates for OLED lighting
  • 3.16. Market Forecast for Organic photovoltaics
  • 3.17. Latest news on organic photovoltaics
  • 3.18. Segmented market forecast for flexible OLED displays
  • 3.19. OLED display revenue by technology
  • 3.20. Smart window production capacity by technology & player
  • 3.21. Smart window market projection
  • 3.22. Market Forecasts
  • 3.23. TCF film prices used in our projections
  • 3.24. Ten-year technology-segmented transparent conducting layer forecasts in $
  • 3.25. Ten-year technology-segmented transparent conducting film forecasts in area
  • 3.26. Ten-year technology-segmented transparent conducting glass forecasts in area
  • 3.27. Ten-year application-segmented for ITO films
  • 3.28. Ten-year application-segmented for ITO glass
  • 3.29. Ten-year application-segmented for silver nanowire TCFs
  • 3.30. Ten-year application-segmented for metal mesh TCFs
  • 3.31. Ten-year application-segmented for PEDOT TCFs

4. COMPANY INTERVIEWS

  • 4.1. Arkema, France
  • 4.2. Blue Nano, USA
  • 4.3. Bluestone Global Tech, USA
  • 4.4. C3Nano
  • 4.5. Cambrios, USA
  • 4.6. Canatu, Finland
  • 4.7. Carestream Advanced Materials, USA
  • 4.8. Charmtron Inc
  • 4.9. Chasm(ex SWeNT)
  • 4.10. Cima Nanotech, USA
  • 4.11. ClearJet, Israel
  • 4.12. Dai Nippon Printing, Japan
  • 4.13. Displax Interactive Systems, Portugal
  • 4.14. Epigem Ltd
  • 4.15. E-Fly Optoelectronic Materials Co., Ltd.
  • 4.16. Goss International Americas, USA
  • 4.17. Graphene Frontiers
  • 4.18. Graphene Laboratories, USA
  • 4.19. Graphene Square
  • 4.20. Graphenea
  • 4.21. Haydale Ltd
  • 4.22. Heraeus, Germany
  • 4.23. Kimoto
  • 4.24. Komori Corporation
  • 4.25. Multitaction
  • 4.26. Nanogap, Spain
  • 4.27. NanoIntegris
  • 4.28. Nanomade
  • 4.29. Neonode
  • 4.30. OCSiAl
  • 4.31. O-Film, China
  • 4.32. PolyIC, Germany
  • 4.33. Poly-Ink, France
  • 4.34. Promethean Particles
  • 4.35. Seashell Technology, USA
  • 4.36. Showa Denko, Japan
  • 4.37. Showa Denko K.K
  • 4.38. Sinovia Technologies, USA
  • 4.39. SouthWest NanoTechnologies, USA
  • 4.40. Toppan Printing
  • 4.41. UniPixel, USA
  • 4.42. University of Exeter, UK
  • 4.43. Visual Planet, UK
  • 4.44. Wuxi Graphene Film
  • 4.45. XinNano Materials, Taiwan
  • 4.46. Zytronic, UK
  • 4.47. Zyvex

5. COMPANY PROFILES

  • 5.1. Agfa-Gevaert, Belgium
  • 5.2. 3M, USA
  • 5.3. Atmel, USA
  • 5.4. C3Nano, USA
  • 5.5. Chasm Technologies, USA
  • 5.6. Cheil Industries, South Korea
  • 5.7. Chimei Innolux, Taiwan
  • 5.8. Chisso Corp., Japan
  • 5.9. Conductive Inkjet Technologies (Carlco), USA
  • 5.10. Dontech Inc., USA
  • 5.11. Duke University, USA
  • 5.12. Eastman Kodak, USA
  • 5.13. Eikos, USA
  • 5.14. ELK, South Korea
  • 5.15. Evaporated Coatings Inc., USA
  • 5.16. Evonik, Germany
  • 5.17. Fujifilm Ltd, Japan
  • 5.18. Fujitsu, Japan
  • 5.19. Gunze Ltd, Japan
  • 5.20. Hitachi Chemical, Japan
  • 5.21. Holst Center, Netherlands
  • 5.22. Iljin Display, South Korea
  • 5.23. Institute of Chemical and Engineering Sciences (ICES), Singapore
  • 5.24. Join Well Technology Company Ltd., Taiwan
  • 5.25. J-Touch, Taiwan
  • 5.26. KAIST, South Korea
  • 5.27. Komoro, Japan
  • 5.28. KPT Shanghai Keyan Phosphor Technology Co. Ltd., China
  • 5.29. Lee Tat Industrial Development (LTI) Ltd, Hong Kong
  • 5.30. LG Chem, South Korea
  • 5.31. Maxfilm, South Koera
  • 5.32. Mianyang Prochema Plastics Co., Ltd., China
  • 5.33. Mirae/MNTec, South Korea
  • 5.34. Mitsui & Co. (U.S.A.), Inc., Mitsui Ltd., Japan
  • 5.35. Mutto Optronics, China
  • 5.36. Nagase Corporation, Japan
  • 5.37. Nanopyxis, South Korea
  • 5.38. National Institute of Advanced Industrial Science and Technology (AIST), Japan
  • 5.39. National University of Singapore (NUS), Singapore
  • 5.40. Nicanti, Finland
  • 5.41. Nitto Denko, Japan
  • 5.42. Nouvo Film
  • 5.43. Oike & CO., Ltd., Japan
  • 5.44. Oji Paper Group, Japan
  • 5.45. Panipol Ltd., Finland
  • 5.46. Perceptive Pixel, USA
  • 5.47. Polychem UV/EB, Taiwan
  • 5.48. Power Booster, China
  • 5.49. Rice University, USA
  • 5.50. Rolith, USA
  • 5.51. Samsung Electronics, South Korea
  • 5.52. Sang Bo Corporation (SBK), South Korea
  • 5.53. Sekisui Nano Coat Technology Ltd., Japan
  • 5.54. Sheldahl, USA
  • 5.55. Sigma-Aldrich, USA
  • 5.56. Sony Corporation, Japan
  • 5.57. Sumitomo Metal Mining Co., Inc., Japan
  • 5.58. Suzutora, Japan
  • 5.59. TDK, Japan
  • 5.60. Teijin Kasei America, Inc. / Teijin Chemical, USA
  • 5.61. Top Nanosys, South Korea
  • 5.62. Toray Advanced Film (TAF), Japan
  • 5.63. Toyobo, Japan
  • 5.64. UCLA, USA
  • 5.65. Unidym, USA
  • 5.66. University of Michigan, USA
  • 5.67. VisionTek Systems Ltd., UK
  • 5.68. Young Fast Optoelectronics, Taiwan

IDTECHEX RESEARCH REPORTS AND CONSULTING

FIGURES

  • 5.1. Typical properties on PET with bar coater
  • 5.2. Key performance data characteristics 3M's metal mesh TCFs
  • 5.3. Yielded cost per unit area of TCF for touch panel applications
  • 5.4. Tiny copper wires can be built in bulk and then "printed" on a surface to conduct current, transparently.
  • 5.5. Eastman Kodak HCF Film
  • 5.6. Opportunity for PEDOT in the Display industry
  • 5.7. Performance of PEDOT formulation from Eastman Kodak versus ITO
  • 5.8. CNT Ink Production Process
  • 5.9. Target application areas of Eikos
  • 5.10. Transmittance (%) as a function of wavelength (nm) for organic conductive polymers and ITO.
  • 5.11. Comparison of organic conductive polymers and configuration of the developed organic conductive polymer film
  • 5.12. Gunze's flexible display, presented early 2009
  • 5.13. Picture and pattern of transparent thermally conductive film
  • 5.14. Efficiency of TCF vs cell size
  • 5.15. Indium migration vs other TCFs
  • 5.16. A schematic giving insight into MNTech's manufacturing process and a table outlining performance levels
  • 5.17. Ga: ZnO films on a glass panel with the inventors and scanning electron images of 3D transparent conducting electrodes
  • 5.18. The owners of Nicanti
  • 5.19. Nicanti Printaf project
  • 5.20. Transparent conductive film - ELECRYSTA
  • 5.21. Sales and operating profits for Nitto Denko
  • 5.22. Nitto Denko's product offerings for displays including ITO film
  • 5.23. Transparent conductive film using organic semiconductors
  • 5.24. TCF solutions from Panipol
  • 5.25. Polychem PEDOT Polymer Coating
  • 5.26. Patterned Sample by the New Technology
  • 5.27. JEFF FITLOW -Yu Zhu, a postdoctoral researcher at Rice University, holds a sample of a transparent electrode that merges graphene and a fine aluminum grid
  • 5.28. A hybrid material that combines a fine aluminum mesh with a single-atom-thick layer of graphene
  • 5.29. An electron microscope image of a hybrid electrode developed at Rice University
  • 5.30. Roll-to-roll CVD production of very large-sized flexible graphene films
  • 5.31. ITO-on-PET film stack
  • 5.32. FLECLEAR structure
  • 5.33. Teijin's ELECLEAR ITO film
  • 5.34. New metal grid TCF technology developed by Toray
  • 5.35. Etched metal mesh TCF technology developed by Toray
  • 5.36. CNT TCF technology developed by Toray
Back to Top