Cover Image
市場調查報告書

陸地、海、天空用電動運輸機器的增程器市場

Range Extenders for Electric Vehicles Land, Water & Air 2017-2027

出版商 IDTechEx Ltd. 商品編碼 228170
出版日期 內容資訊 英文 167 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
陸地、海、天空用電動運輸機器的增程器市場 Range Extenders for Electric Vehicles Land, Water & Air 2017-2027
出版日期: 2016年09月01日 內容資訊: 英文 167 Pages
簡介

2027年預計混合動力汽車生產超越900萬台,那些全部裝備當作純電動車沒有的輔助電源的增程器。同樣的,巴士,軍用車輛,船和其他電動運輸機器也裝備增程器,這樣一來便成為大規模的新市場。

本報告提供包含小客車和高爾夫球車、堆高機、軍用車輛、自主式潛水艇、飛機等的各種陸地、海、天空用電動運輸機器裝備的增程器的市場相關調查,增程器概要,演進的過程,出貨數、價格、市場規模(額)的變化與預測,市場成長的各種影響因素分析,主要的開發業者、製造商、引進經營者簡介等詳細彙整。

第1章 摘要整理、總論

  • 未來的增程器市場
  • 電動車市場現在、未來
  • 混合動力汽車、純電動車比較
  • 混合動力汽車市場成長推進因素
  • 今後增程器受要求的東西
  • 3代增程器
  • 增程器的低功率的理由
  • 能源採集:無法替代主要聯盟
  • 裝備增程器的車輛的主要趨勢
  • 電動運輸機器的加熱及有效距離延長的整合
  • 緊急用增程器
  • 最新趨勢
  • BMW
  • 2015年的石油價格暴跌對電動運輸機器的影響
  • 增程器和能源採集的協同效應
  • 來自2015年9月英國召開的低碳車活動的教訓

第2章 簡介

  • 電動運輸機器的類型
  • 各種燃料
  • 本來的電動運輸機器
  • 純電動車的性能改善
  • 系列 vs. 並聯混合
  • 混合的行動方式
  • 微混合是誤稱
  • 深的混合化
  • 電池的成本及性能是關鍵
  • 混合的價格高級
  • 所謂增程器
  • PEM燃料電池
  • 市場上燃料電池增程器的地位
  • 能源採集與回生加速器

第3章 REEV的市場與技術

  • 陸上電動運輸機器增程器
  • 電力飛機增程器
  • 比較
  • 航空部門的燃料電池
  • 民航機
  • 海上、水中電動運輸機器增程器

第4章 增程器開發業者、製造商

第5章 增程器整合者

第6章 最近的發展趨勢

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Over nine million hybrid cars will be made in 2027 - each with a range extender.

We are in the decade of the hybrid electric vehicle despite the fact that most off-road and underwater vehicles are pure electric. That includes most forklifts, golf cars and mobility vehicles for the disabled plus Autonomous Underwater Vehicles (AUVs) and personal submarines. Indeed, most electric aircraft are pure electric as well. The reason is that these are mainly small as are electric two-wheelers, which are also almost all pure electric. Small vehicles rarely need to travel long distances. In addition, these pure electric vehicles are often used where a conventional engine is banned as on lakes and indoors or where it is impracticable as with underwater vehicles. By contrast, half the electric vehicle market value lies in larger road vehicles, notably cars, and here the legal restrictions are weaker or non-existent and range anxiety compels most people to buy hybrids if they go electric at all.

Over nine million hybrid cars will be made in 2027, each with a range extender, the additional power source that distinguishes them from pure electric cars. Add to that significant money spent on the same devices in buses, military vehicles, boats and so on and a major new market emerges. This unique report is about range extenders for all these purposes - their evolving technology and market size. Whereas today's range extenders usually consist of little more than off the shelf internal combustion engines, these are rapidly being replaced by second generation range extenders consisting of piston engines designed from scratch for fairly constant load in series hybrids. There are some wild cards like Wankel engines and rotary combustion engines or free piston engines both with integral electricity generation. However, a more radical departure is the third generation micro turbines and fuel cells that work at constant load. The report compares all these. It forecasts the lower power needed over the years given assistance from fast charging and energy harvesting innovations ahead. Every aspect of the new range extenders is covered.

This report profiles key developers, manufactures and integrators of range extenders for land, water and airborne electric vehicles. It gives ten year forecasts of the different types of electric vehicle and of range extenders by number, unit value and market value. Market drivers and the changing requirements for power output are analysed. Will shaftless range extenders with no separate electricity generator take over and when will that be? What fuels will be used and when? What are the pros and cons of each option and who are the leaders? It is all here.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Range extender market in 2027
  • 1.2. EV market 2017 and 2027 identifying hybrids
  • 1.3. Hybrid and pure electric vehicles compared
  • 1.4. Hybrid market drivers
  • 1.5. What will be required of a range extender 2017-2027
  • 1.6. Three generations of range extender
  • 1.7. Why range extenders need lower power over the years
  • 1.8. Energy harvesting - mostly ally not alternative
  • 1.9. Key trends for range extended vehicles
  • 1.10. Combining heating and range-extension for electric vehicles
  • 1.11. Emergency range extenders
  • 1.12. Latest timelines
    • 1.12.1. Piston engine use and rotary engine tests
    • 1.12.2. Gas turbines
    • 1.12.3. Fuel cell rollouts
  • 1.13. BMW
  • 1.14. Effect of 2015 oil price collapse on electric vehicles
  • 1.15. Range extender synergy with energy harvesting
  • 1.16. Interviews September 2015
  • 1.17. Lessons from CENEX LCV event UK September 2015

2. INTRODUCTION

  • 2.1. Types of electric vehicle
  • 2.2. Many fuels
  • 2.3. Born electric
  • 2.4. Pure electric vehicles are improving
  • 2.5. Series vs parallel hybrid
  • 2.6. Modes of operation of hybrids
    • 2.6.1. Plug in hybrids
    • 2.6.2. Charge-depleting mode
    • 2.6.3. Blended mode
    • 2.6.4. Charge-sustaining mode
    • 2.6.5. Mixed mode
  • 2.7. Microhybrid is a misnomer
  • 2.8. Deep hybridisation
  • 2.9. Battery cost and performance are key
  • 2.10. Hybrid price premium
  • 2.11. What is a range extender?
    • 2.11.1. First generation range extender technology
    • 2.11.2. Second generation range extender technology
    • 2.11.3. Third generation range extender technology
    • 2.11.4. Single cylinder range extenders
  • 2.12. PEM fuel cells
  • 2.13. Market position of fuel cell range extenders
  • 2.14. Energy harvesting and regenerative acceleration

3. MARKETS AND TECHNOLOGIES FOR REEVS

  • 3.1. Range extenders for land craft
  • 3.2. Range Extenders for electric aircraft
    • 3.2.1. Military aircraft
  • 3.3. Comparisons
  • 3.4. Fuel cells in aviation
  • 3.5. Civil aircraft
  • 3.6. Range extenders for marine craft

4. RANGE EXTENDER DEVELOPERS AND MANUFACTURERS

  • 4.1. Advanced Magnet Laboratory USA
  • 4.2. AeroVironment / Protonex Technology USA
  • 4.3. Austro Engine Austria
  • 4.4. Bladon Jets UK
  • 4.5. BMW Germany
  • 4.6. Brayton Energy USA
  • 4.7. Capstone Turbine Corporation USA
  • 4.8. Compound Rotary Engines UK
  • 4.9. Daimler AG inc Mercedes Benz Germany
  • 4.10. DLR German Aerospace Center Germany
    • 4.10.1. Free piston range extenders
  • 4.11. Duke Engine axial piston
  • 4.12. EcoMotors
  • 4.13. Ener1 USA
  • 4.14. ETV Motors Israel
  • 4.15. FEV USA
  • 4.16. Flight Design Germany
  • 4.17. Getrag Germany
  • 4.18. GSE USA
  • 4.19. Hüttlin Germany
  • 4.20. Hyperdrive UK
  • 4.21. Libralato UK
    • 4.21.1. Libralato technology
    • 4.21.2. Avoiding the problems of the Wankel engine
    • 4.21.3. The company
  • 4.22. Intelligent Energy UK
  • 4.23. KSPG Germany
  • 4.24. LiquidPiston USA
  • 4.25. Lotus Engineering UK
  • 4.26. MAHLE Powertrain UK
  • 4.27. Mazda Japan
  • 4.28. Nissan Japan
  • 4.29. Peec-Power BV The Netherlands
  • 4.30. Polaris Industries Switzerland
  • 4.31. Powertrain Technologies UK
  • 4.32. Proton Power Systems plc UK/Germany
  • 4.33. Ricardo UK
  • 4.34. Suzuki Japan
  • 4.35. Techrules China
  • 4.36. Toyota Japan
  • 4.37. Urbee Canada
  • 4.38. Volkswagen Germany
  • 4.39. Volvo Sweden/China
    • 4.39.1. Long term major work
    • 4.39.2. Volvo V8 performance with four cylinders
  • 4.40. Warsaw University of Technology, Poland

5. RANGE EXTENDER INTEGRATORS

  • 5.1. ACAL Energy UK
  • 5.2. Airbus (formerly EADS) Germany
  • 5.3. Altria Controls USA
  • 5.4. Ashok Leyland India
  • 5.5. Audi Germany
  • 5.6. AVL Austria
  • 5.7. Azure Dynamics USA
  • 5.8. BAE Systems UK
  • 5.9. BMW Germany
  • 5.10. Boeing Dreamworks USA
  • 5.11. Chrysler USA
  • 5.12. ENFICA-FC Italy
  • 5.13. Ford USA
  • 5.14. Frazer-Nash UK
  • 5.15. General Motors including Opel
  • 5.16. Honda Japan
  • 5.17. Hyundai Korea
  • 5.18. Jaguar Land Rover UK
  • 5.19. Langford Performance Engineering Ltd UK
  • 5.20. Marion HSPD USA
  • 5.21. Pipistrel Slovenia
  • 5.22. SAIC China
  • 5.23. Skyspark Italy
  • 5.24. Suzuki Japan
  • 5.25. Tata Motors India
  • 5.26. Toyota Japan
  • 5.27. Université de Sherbrooke Canada
  • 5.28. University of Stuttgart Germany
  • 5.29. Volvo Sweden/ China
  • 5.30. Walkera China
  • 5.31. Wrightspeed USA
  • 5.32. Yo-Avto Russia

6. RECENT ADVANCES

  • 6.1. Latest update on Taiwan Automotive International Forum and Exhibition October 2014
  • 6.2. Electric vehicles set for 2014 MPG Marathon
  • 6.3. Hydrogen fuel cell range extenders double the range of EV trucks

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Numbers of EVs, in thousands, sold globally, 2017-2027 by applicational sector
  • 1.2. Number of hybrid vehicles sold globally (in thousands), this being approximately equal to the number of range extender sets in later years
  • 1.3. Range extender numbers (thousand), unit price (US$) and market value (US$ million) 2017-2027
  • 1.4. Three generations of range extender with examples of construction, manufacturer and power output
  • 2.1. Price premium for hybrid buses
  • 4.1. Data for RQ-11A version of AeroVironment Raven

FIGURES

  • 1.1. Number of hybrid vehicles sold globally (in thousands), this being approximately equal to the number of range extender sets in later years
  • 1.2. Range extender numbers (thousand) 2017-2027
  • 1.3. Range extender unit price (US$) 2017-2027
  • 1.4. Range extender market value (US$ million) 2017-2027
  • 1.5. Advantages and disadvantages of hybrid vs pure electric vehicles
  • 1.6. Indicative trend of charging and electrical storage for large hybrid vehicles over the next decade
  • 1.7. Evolution of construction of range extenders over the coming decade
  • 1.8. Examples of range extender technology in the shaft vs no shaft categories
  • 1.9. Trend of size of largest (in red) and smallest (in green) fuel cell sets used in bus trials worldwide 1991-2011
  • 1.10. Evolution of lower power range extenders for large vehicles
  • 1.11. The most powerful energy harvesting in vehicles
  • 1.12. The gull wing BMW i8
  • 1.13. Types of range extender by cost and local emission, with the zero emission options compared with energy harvesting, all of which has zero local emission.
  • 1.14. Types of energy harvesting by type of vehicle
  • 2.1. ThunderVolt hybrid bus
  • 2.2. BAE Systems powertrain in a bus
  • 2.3. Hybrid bus powertrain
  • 2.4. Hybrid car powertrain using CNG
  • 2.5. Mitsubishi hybrid outdoor forklift replacing a conventional ICE vehicle
  • 2.6. Hybrid military vehicle that replaces a conventional ICE version
  • 2.7. Hybrid sports boat replacing a conventional ICE version
  • 2.8. CAF-E hybrid motorcycle design based on a Prius type of drivetrain
  • 2.9. Hybrid tugboat replacing a conventional ICE version to meet new pollution laws and provide stronger pull from stationary
  • 2.10. Some hybrid variants
  • 2.11. Evolution of plug in vs mild hybrids
  • 2.12. Trend to deep hybridisation
  • 2.13. Evolution of hybrid structure
  • 2.14. Battery price assisting price of hybrid and pure electric vehicles as a function of power stored
  • 2.15. Electric machine and ICE sub-assembly
  • 2.16. 48V Model chosen
  • 2.17. The principle of the Proton Exchange Membrane fuel cells
  • 3.1. Northrop Grumman surveillance airship with fuel cell range extender and energy harvesting for virtually unlimited range
  • 3.2. Light utility aircraft - power-systems weight comparison
  • 3.3. Light primary trainer - power-systems weight comparison
  • 3.4. Battery and jet fuel loading
  • 3.5. Pilot plus payload vs range for fuel cell light aircraft and alternatives
  • 3.6. Total weight vs flight time for PEM fuel cell planes
  • 3.7. Takeoff gross weight breakdowns. Left: Conventional reciprocating-engine-powered airplane. Right: Fuel-cell-powered airplane.
  • 3.8. JAMSTEC Fuel Cell Underwater Vehicle FCUV
  • 4.1. AeroVironment Raven
  • 4.2. Raven enhancement
  • 4.3. Aqua Puma
  • 4.4. AeroVironment Helios
  • 4.5. Global Observer first flight August 2010
  • 4.6. Bladon Jets gas turbine range extender for cars and light aircraft and the Jaguar CX75
  • 4.7. Jaguar Land Rover
  • 4.8. Latest Bladon Jets design
  • 4.9. Range extender for BMW i3 electric car
  • 4.10. Capstone microturbine
  • 4.11. Capstone turbine in a Japanese bus
  • 4.12. Various sizes of Capstone MicroTurbines
  • 4.13. Daimler roadmap for commercial vehicles
  • 4.14. DLR fuel cell and the electric A320 airliner nose wheel it drives when the airliner is on the ground.
  • 4.15. Holstenblitz fuel cell car trial
  • 4.16. A new power generator for hybrid vehicles
  • 4.17. EcoMotors opposing piston range extender
  • 4.18. FEV extreme downsized range extender engine
  • 4.19. GSE mini diesel driving a propeller
  • 4.20. Greg Stevenson (left) and Gene Sheehan, Fueling Team GFC contender, with GSE Engines.
  • 4.21. Block diagram of the Frank/Stevenson parallel hybrid system
  • 4.22. Libralato cycle
  • 4.23. Fuel cell taxi trials
  • 4.24. Fuel cell development
  • 4.25. KSPG 30kW V2 range extender for small cars
  • 4.26. The LiquidPiston engine
  • 4.27. New two cylinder range extender from Lotus Engineering
  • 4.28. Lotus hybrid powertrain and second generation range extender ICE
  • 4.29. Lotus three and two cylinder range extenders
  • 4.30. Proton EMAS
  • 4.31. MAHLE range extenders
  • 4.32. MAHLE compact range extender
  • 4.33. MAHLE range extender at EVS26 2012
  • 4.34. Polaris REX range extender left with generator, right with peripherals as well
  • 4.35. Location of technical advances in Polaris range extender
  • 4.36. Ricardo Wolverine engine for hybrid UAVs
  • 4.37. Toyota FPEG options and piston geometry
  • 4.38. Volkswagen XL1 hybrid concept
  • 5.1. Adura powertrain with microturbine.
  • 5.2. Ashok Leyland CNG hybrid bus
  • 5.3. Azure Dynamics hybrid powertrain
  • 5.4. Bus with BAE Systems hybrid power train
  • 5.5. Boeing fuel cell aircraft
  • 5.6. ENFICA FC two seater fuel cell plane
  • 5.7. Ford Lincoln hybrid car offered at no price premium over the conventional version
  • 5.8. Frazer-Nash EREV powertrain
  • 5.9. Namir EREV Supercar
  • 5.10. Proton Exora
  • 5.11. Chevrolet Volt powertrain
  • 5.12. Honda IMA
  • 5.13. Hyundai Blue hybrid car
  • 5.14. Hyundai fuel cell powered car
  • 5.15. The LPE REEV concept car
  • 5.16. Marion Hyper-Sub Submersible Powerboat
  • 5.17. Skyspark in flight
  • 5.18. Suzuki Burgman fuel cell scooter
  • 5.19. Suzuki concept fuel cell motorcycle headed for production
  • 5.20. Tata Motors roadmap for hybrid commercial vehicles
  • 5.21. Toyota Prius hybrid car is the world's best selling electric car
  • 5.22. Toyota hybrid forklift
  • 5.23. Hybrid quad bike
  • 5.24. Hydrogenius
  • 5.25. Volvo hybrid bus
  • 5.26. Volvo technical concept 1
  • 5.27. Volvo technical concept 2
  • 5.28. Volvo technical concept 3
Back to Top