Cover Image
市場調查報告書

5G實現的動機:全球各國的措施情形、相關技術、藍圖

5G Full Steam Ahead: Worldwide Initiatives, Technologies and Roadmap

出版商 IDATE DigiWorld 商品編碼 345118
出版日期 內容資訊 英文 45 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
5G實現的動機:全球各國的措施情形、相關技術、藍圖 5G Full Steam Ahead: Worldwide Initiatives, Technologies and Roadmap
出版日期: 2015年11月10日 內容資訊: 英文 45 Pages
簡介

本報告提供全球各國現在進行中的5G計劃的現狀與成果相關分析、5G開發的主要國家及國際性計畫,及5G應該滿足主要的標準 (等候時間縮短、降低成本、具靈活性的網路技術等)、必要的RAN/核心網路的改善、頻寬的問題 (6GHz以上)、5G網路的發展時期/地點/方法相關藍圖等相關調查與考察。

第1章 摘要整理

第2章 分析方法

第3章 全球各國的5G措施與國際合作

  • 5G PPP:歐洲委員會的研究開發 (R&D) 推動策略
  • 5G Forum:在韓國的措施
  • 第5代行動推動論壇 (5GMF:日本)
  • 4G Americas (美國)
  • IMT-2020 (5G) Promotion Group:中國的措施
  • 學術研究計劃
    • 英國的大學
    • 美國的大學
    • 其他大學

第4章 5G技術

  • 哲學
    • 信號傳送、控制功能的改善
    • 移動性的擴大
    • 削減待機時間
    • 強化與各產業的協調對應
    • 傳統行動電話結構的改變
    • 更多樣設備的應對
    • 能源足跡的削減
    • 具靈活性、彈性的技術
    • 削減運用成本/資本成本
  • 改善技術 (LTE後方兼容性)
    • 無線接取網路 (RAN)
    • 核心網路的發展
  • 突破性技術:新的無線連線技術
    • 新的波形與存取方式
    • 全雙工通訊
  • 5G頻寬
    • 6GHz以下
    • 6∼100GHz

第5章 5G發展藍圖

圖表一覽

目錄
Product Code: M15126MR

This report provides its readers with the state of the art regarding the 5G project:

  • An overview and summary of the main international 5G initiatives
  • The main criteria 5G should fulfill (eg. reduced latency, lower costs, adaptive network technology, ...) and for what reasons
  • Needed evolution of RAN and Core network
  • Spectral issues (beyond 6Ghz)

It then also draws a roadmap when, where and how 5G networks will be first deployed.

Table of Contents

1. Executive Summary

2. Methodology

3. 5G initiatives around the world and international cooperation

  • 3.1. The 5G PPP, the European Commission R&D initiative
  • 3.2. 5G Forum, the South Korean initiative
  • 3.3. The 5G Mobile Forum (5GMF, Japan)
  • 3.4. 4G Americas (USA)
  • 3.5. IMT-2020 (5G) Promotion Group, the Chinese initiative
  • 3.6. Academic research programmes
    • 3.6.1. UK universities
    • 3.6.2. US universities
    • 3.6.3. Other universities

4. 5G technologies

  • 4.1. The philosophy
    • 4.1.1. Improved signalling and control
    • 4.1.2. Increased mobility
    • 4.1.3. Reduced latency
    • 4.1.4. Taking vertical industries into account
    • 4.1.5. Beyond the traditional cellular architecture
    • 4.1.6. Support for more categories of devices
    • 4.1.7. Reducing the energy footprint
    • 4.1.8. Adaptive and flexible technologies
    • 4.1.9. Reduced opex and capex
  • 4.2. Improvement technologies (backward compatibility with LTE)
    • 4.2.1. Radio Access Network
    • 4.2.2. Core Network evolutions
  • 4.3. Breakthrough technologies: new radio access technologies
    • 4.3.1. New waveforms & access schemes
    • 4.3.2. Full duplex
  • 4.4. 5G spectrum
    • 4.4.1. Below 6 GHz
    • 4.4.2. Between 6 and 100 GHz

5. 5G roadmap

Tables

  • Table 1: Development path of mobile communications as a media
  • Table 2: Free space path loss depending on frequency band
  • Table 3: Number of bits per symbol with QAM modulation
  • Table 4: Usage of SC-FDMA and OFDMA depending on the distance to the centre of the cell
  • Table 5: Comparison of access principles in existing and futre radio access technologies
  • Table 6: WRC-2015 candidate bands

Figures

  • Figure 1: 5G projects roadmap
  • Figure 2: 5G Forum Korea vision
  • Figure 3: 5G Forum Korea requirements
  • Figure 4: Typical services and requirements, 5G Forum view
  • Figure 5: Structure of the IMT-2020 (5G) Promotion Group
  • Figure 6: 5GIC purpose-built building
  • Figure 7: SoftRAN by ONRC
  • Figure 8: The 5G Lab environment
  • Figure 9: Performance objectives for 5G and associated use cases
  • Figure 10: Impact of packet loss on speed performance
  • Figure 11: Proposed evolution of signalling and control in packet frames
  • Figure 12: TDD Frame structure for latency reduction
  • Figure 13: Presentation of the three main services of 5G and their specific requirements
  • Figure 14: Presentation of Huawei UE Centric No Cell Radio Access (UCNC) concept.
  • Figure 15: 5G Cloud RAN enabling flexible deployment and network architecture
  • Figure 16: Cohabitation with multiple air interface and 5G development efforts
  • Figure 17: Challenges associated with Massive MIMO
  • Figure 18: Considerations on massive MIMO
  • Figure 19: The different use of massive MIMO depending on frequency bands
  • Figure 20: Simulation by Mitsubishi using a 48-element adaptive phase antenna array using 44 GHz frequency bands and 500 MHz of bandwidth
  • Figure 21: A new modulation for more energy efficiency of MTC
  • Figure 22: Inter-layer and intra-layer multi-connectivity
  • Figure 23: Terminal-Small Cell concept by Chinese device manufacturer Coolpad
  • Figure 24: 5G core network architecture
  • Figure 25: RAN integration within 5G
  • Figure 26: Presentation of network slicing by T-Mobile
  • Figure 27: Separation of user and control plane
  • Figure 28: Adaptive Frame Structure
  • Figure 29: Waveforms and frequency bands
  • Figure 30: Comparison of Orthogonal and non-Orthogonal waveforms
  • Figure 31: Duplex mode for 5G
  • Figure 32: Challenges related to harnessing higher frequency bands
  • Figure 33: Spectrum map for frequency bands between 6 and 100 GHz
  • Figure 34: Current 5G roadmap
  • Figure 35: Ericsson roadmap for the development of a new 5G air interface

List of players reviewed / mentioned

  • China Academy of Telecommunication Technology
  • Coolpad
  • Ericsson
  • ETRI
  • GSMA
  • Huawei
  • Intel
  • Interdigital
  • KCA
  • KT
  • Lenovo
  • LG
  • LGU+
  • Mitsubishi
  • National Instruments
  • Nokia
  • NTT DOCOMO
  • Ofcom
  • Rohde &Schwarz
  • Samsung
  • SK Telecom
  • T-Mobile

Slideshow contents

1. 5G initiatives

  • Major 5G initiatives

2. 5G technologies

  • What will 5G be about?
  • Behind the principles, technologies are under study
  • 5G will be about harnessing all frequency ranges
  • Candidate bands
  • A difficult harmonisation of spectrum usage
  • A new network architecture

3. 5G roadmap

  • 5G roadmap
Back to Top