Cover Image
市場調查報告書

行動寬頻·廣播用頻譜:UHF帶預測·混合式網路所扮演的角色

Spectrum for Mobile Broadband and Broadcasting: 2025 Scenarios for the UHF Band & the Role of Hybrid Networks

出版商 IDATE DigiWorld 商品編碼 314953
出版日期 內容資訊 英文 85 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
行動寬頻·廣播用頻譜:UHF帶預測·混合式網路所扮演的角色 Spectrum for Mobile Broadband and Broadcasting: 2025 Scenarios for the UHF Band & the Role of Hybrid Networks
出版日期: 2014年09月25日 內容資訊: 英文 85 Pages
簡介

本報告提供UHF波段預測最具可能性的混合式網路所扮演的角色的相關調查,提供廣播頻譜現況,行動頻譜的現狀與未來預測,彙整雲端混合式網路的可能性,及歐洲的UHF帶預測等資料,為您概述為以下內容。

第1章 摘要整理

第2章 分析方法·定義

第3章 簡介

第4章 廣播頻譜狀況

  • 電纜在主要TV套組的TV點閱中越發成為主要形態
  • 網路數位化的各種程度
  • 地面電視:減少速度慢
  • 地面電波廣播的使用頻譜
    • 美國的廣播頻譜
    • 歐洲的廣播頻譜
    • 類比地區削減了電視台分配的頻譜量
  • 衛星TV·無線電頻譜
    • L波段
    • S帶
    • C波段
    • Ku·Ka波段
    • 亞洲的衛星TV頻譜

第5章 行動頻譜狀況·未來的需求

  • 現在進行中的開發
    • 世界水準
    • 歐洲水準
  • 目前行動頻譜
    • 行動寬頻用頻譜概要
    • UHF帶以下的行動頻譜
    • 700MHz帶
  • 適合行動寬頻的新頻帶
  • UHF帶的部分是否將成為行動寬頻用的新資源?
    • 頻譜/行動許可證評估
    • SDL

第6章 雲端混合式網路解決UHF帶頻譜不足的問題

  • 混合式網路定義
  • 混合式網路的理由
    • unicast技術的限制:unicast及多播/廣播播送比較
    • 使用廣播的理由/時候
  • 地面電波廣播技術
  • 視訊解析度相關的技術進步
  • 混合方法
    • 混合廣播寬頻(HBB)
    • 塔覆蓋範圍
    • H2B2VS
    • TDF B2M概念
  • 混合式網路展望的晶片組及設備
    • 晶片組
    • 天線及帶支援
    • 消耗功率的問題
    • 機上盒及覆蓋範圍

第7章 歐洲的UHF帶預測

  • 技術藍圖
  • 預測提示·主要的預測
  • 預測1:歐洲DTT將維持470-694MHz(現狀)
  • 預測2:廣播網路行動裝置達到更重要的角色
  • 預測3:主要用於混合式網路的UHF帶
  • 預測4:用於行動網路的UHF帶
  • 結論

第8章 詞彙表

第9章 附錄:ASO(Analog switch-off)及DTT RoU(使用權)

圖表一覽

目錄
Product Code: M14315MR

Terrestrial broadcasting plays a significant role in TV reception... but the UHF (Ultra High Frequency) band is highly coveted by the mobile industry.

Hybrid networks could provide an answer to spectrum scarcity in the UHF band.

This report presents the most likely scenarios for the UHF band and the role of hybrid networks between now and 2025.

Table of Contents

1. Executive summary

2. Methodology & definitions

  • 2.1.General methodology of IDATE's reports
  • 2.2.2025 scenarios for the UHF band

3. Introduction

4. Broadcasting spectrum status

  • 4.1.Cable is becoming the leading mode of TV access on the main TV set
  • 4.2.Varying degrees of network digitisation
  • 4.3.Terrestrial TV: slower rate of decline
  • 4.4.Spectrum used by terrestrial broadcast
    • 4.4.1.Broadcast spectrum in the USA
    • 4.4.2.Broadcast spectrum in Europe
    • 4.4.3.Digital Dividend(s) reduce the amount of spectrum allocated to broadcasters
  • 4.5.Satellite TV and radio spectrum
    • 4.5.1.L-Band (1-2 GHz)
    • 4.5.2.S-band (2 GHz)
    • 4.5.3.C-Band (4-8 GHz)
    • 4.5.4.Ku and Ka bands
    • 4.5.5.Satellite TV spectrum in Asia

5. Mobile spectrum status and future needs

  • 5.1.On-going developments
    • 5.1.1.At world level
    • 5.1.2.At European level
  • 5.2.Mobile spectrum today
    • 5.2.1.Overview of spectrum used for mobile broadband
    • 5.2.2.Mobile spectrum below the UHF band
    • 5.2.3.The 700 MHz band
  • 5.3.New frequency bands for mobile broadband
  • 5.4.Could parts of the UHF band become new resources for mobile broadband
    • 5.4.1.Spectrum/mobile licences valuation
    • 5.4.2.Supplemental Downlink (SDL)

6. Could hybrid networks solve the spectrum scarcity issue in the UHF band

  • 6.1.Definition of hybrid networks
  • 6.2.Rationale for hybrid networks
    • 6.2.1.Limits of unicast technologies - Comparing unicast and multicast/broadcast delivery
    • 6.2.2.Why / when use broadcast
  • 6.3.Terrestrial broadcast technologies
    • 6.3.1.Digital television - DVB
    • 6.3.2.eMBMS (evolved Multimedia Broadcast and Multicast services)
  • 6.4.Technological evolution related to video resolution
  • 6.5.Hybrid approaches
    • 6.5.1.Hybrid Broadcast Broadband (HBB)
    • 6.5.2.Tower overlay
    • 6.5.3.H2B2VS
    • 6.5.4.TDF B2M concept
  • 6.6.Chipset and device for hybrid networks perspective
    • 6.6.1.Chipsets
    • 6.6.2.Antennas and band support
    • 6.6.3.Power consumption issue
    • 6.6.4.Set-top boxes and gateways

7. 2025 scenarios for the UHF band in Europe

  • 7.1.Technology roadmap
  • 7.2.Presentation of the scenarios and main assumptions
  • 7.3.Scenario 1 - DTT keeps 470-694 MHz in Europe ('status quo')
  • 7.4.Scenario 2 - Broadcast networks play a more important role towards mobile devices
  • 7.5.Scenario 3 - UHF band mainly used by hybrid networks
  • 7.6.Scenario 4 - UHF band used by mobile networks
  • 7.7.Conclusion

8. Glossary

9. Annex: ASO (Analogue Switch-off) and DTT RoU (Rights of Use)

Report tables and figures

Tables

  • Table 1:First and second Digital Dividends, worldwide
  • Table 2:2025 scenarios for the UHF band (470-694 MHz)
  • Table 3:First and second Digital Dividends, worldwide
  • Table 4:Satellite frequency bands and related services
  • Table 5: C-band allocations
  • Table 6:Ku and Ka-Bands for satellite communications (Europe)
  • Table 7:Main frequency bands for UMTS/HSPA/LTE deployment - FDD mode
  • Table 8: Main frequency bands for UMTS/HSPA/LTE deployment - TDD mode
  • Table 9: Status of the 700 MHz band worldwide
  • Table 10:3GPP 700 MHz allocations in Regions 2 and 3
  • Table 11:APT 700 MHz plan - adoption in Asia-Pacific
  • Table 12: Price (eurocents) per MHz per pop. (for 10 years)
  • Table 13:DVB-T and DVB-T2 - number of deployments
  • Table 14:Main characteristics of DVB-T and DVB-T2
  • Table 15:Overview of MBMS support in 3GPP
  • Table 16:Resolution, frame rate, encoding, bit rate and adoption for various TV formats
  • Table 17:Timescales for video coding standards
  • Table 18:Overview of benefits of Hybrid Broadcast Broadband TV
  • Table 19:2025 scenarios for the UHF band (470-694 MHz)
  • Table 20:Criteria presented in our scenarios
  • Table 21:Scenario 1 - DTT keeps 470-694 MHz in Europe ('status quo')
  • Table 22:Scenario 2 - Broadcast networks play a more important role towards mobile devices
  • Table 23:Scenario 3 - UHF band mainly used by hybrid networks
  • Table 24:Scenario 4 - UHF band used by mobile networks

Figures

  • Figure 1:Regional TV access mode split in 2013
  • Figure 2: Radio spectrum status (2014-2015)
  • Figure 3: Radio spectrum status (2014-2015)
  • Figure 4: Change in TV access modes worldwide, 2010-2014
  • Figure 5:Growth of digital TV penetration worldwide by access mode between 2010 and 2013
  • Figure 6:Regional TV access mode split in 2013
  • Figure 7: Penetration rate (% of TVHH) of Terrestrial and Digital Terrestrial TV, by zone (2009-2014)
  • Figure 8:470-698 MHz frequency bands ITU-R allocations
  • Figure 9: TV band spectrum before auction (and after DTV transition), 294 MHz
  • Figure 10: TV band spectrum after auction (and after DTV transition); fewer MHz, markets determined
  • Figure 11: Broadcast spectrum in Europe
  • Figure 12: Timetable for the digital switchover in the world
  • Figure 13:Satellite spectrum overview
  • Figure 14:Spectrum allocation in the 1900-2200 MHz bands (Europe)
  • Figure 15: 450 MHz spectrum in Brazil
  • Figure 16:Potential channelling arrangements in the 700 MHz
  • Figure 17:700 MHz band in the USA
  • Figure 18:700 MHz band auction results in Taiwan
  • Figure 19:APT700 (#28) Lower Duplexer (30 MHz) alignment with Region 1 (EMEA), DD2 spectrum
  • Figure 20:Overlap between the 700 MHz APT band plan and the 800 MHz band
  • Figure 21:Proposed prioritisation for mobile broadband frequency bands in the UK
  • Figure 22:Roadmap for release of more than 500 MHz new spectrum in Sweden
  • Figure 23:Example of supplemental downlink implementation
  • Figure 24:A vision of the evolution of the UHF frequency band
  • Figure 25: Two different approaches to the use of the UHF and VHF bands46
  • Figure 26: Comparison between multicast/broadcast and unicast viewers vs. data rate needs
  • Figure 27: How MBMS works
  • Figure 28:Dynamic allocation of spectrum to unicast and broadcast
  • Figure 29: SFN operating principle
  • Figure 30:LTE eMBMS with low power (LPLT)
  • Figure 31:LTE eMBMS with high power (HPHT)
  • Figure 32:In-band and out-of-band eMBMS configurations
  • Figure 33:Everything Everywhere DL unicast traffic
  • Figure 34: Devices with 4k resolution have four times as many pixels as those with 1080p
  • Figure 35: Comparison by TDF of broadcasting costs of HPHT vs LPLT
  • Figure 36:Options for TV delivery in the future
  • Figure 37:HbbTV features
  • Figure 38: HbbTV building blocks
  • Figure 39: Tower Overlay over LTE-Advanced
  • Figure 40: H2B2VS concept
  • Figure 41:B2M prototype
  • Figure 42:LG G Pro include a DMB-T tuner in its South Korean version
  • Figure 43: Accelerating complexity of new process nodes
  • Figure 44: Cost per transistor is rising for the first time
  • Figure 45: Technicolor LTE set-top box
  • Figure 46: Reliance JIO Android set-top box
  • Figure 47: Netgem HYBRIDGE DSL and LTE gateway
  • Figure 48:Expected evolution of technologies for mobile broadband and broadcasting

Players covered in the report

  • Alcatel-Lucent
  • Anatel
  • Arqiva
  • Astra
  • AT&T
  • BBC
  • Broadcom
  • BT
  • China Mobile
  • Deutsche Telekom
  • DIrecTV
  • Dish Network
  • EE
  • Ericsson
  • Eutelsat
  • FCC
  • HbbTV.org
  • Industry Canada
  • Inmarsat
  • Intelsat
  • Iridium
  • KDDi
  • Korea Telecom
  • KPN
  • KT
  • Lantiq
  • LightSquared
  • Mediatek
  • Netflix
  • Netgem
  • NTT DOCOMO
  • Ofcom
  • Orange
  • Qualcomm
  • Reliance
  • Samsung
  • SiriusXM
  • Smart Communications
  • Sprint (formerly Sprint Nextel)
  • Subtel
  • Taiwan Mobile
  • TDF
  • Technicolor
  • Telstra
  • TerreStar
  • Thomson
  • Thuraya
  • T-Mobile
  • TRAI
  • Verizon Wireless
  • YouTube
Back to Top