Cover Image
市場調查報告書

塑膠光纖(POF)市場與技術的評估

Plastic Optical Fiber Market & Technology Assessment Study - 2016 Edition

出版商 Information Gatekeepers Inc. 商品編碼 203179
出版日期 內容資訊 英文
商品交期: 最快1-2個工作天內
價格
Back to Top
塑膠光纖(POF)市場與技術的評估 Plastic Optical Fiber Market & Technology Assessment Study - 2016 Edition
出版日期: 2016年08月01日 內容資訊: 英文
簡介

透過塑膠光纖(POF)的數據產業由於歐洲汽車廠商及新技術的開發等而達到急速成長。產業用控制裝置及醫療部門的引進依舊是產業中心,並持續穩定成長。和通訊部門不同,POF可用於許多產業部門,可說在業界不景氣時該市場也仍強勢。此外,由於在光源及連接、光纖領域上新技術開發的發展,解除了頻寬及距離上的限制,並拓展了往新用途發展的可能性。和玻璃光纖(GOF)相比下也毫不遜色的POF評價正在日益高升,並展現出達到飛躍性發展的潛力。

本報告詳細分析POF(塑膠光纖)的市場與技術,提供POF的普及推動因素和與其他技術的比較,全球各國推進的技術開發狀況,彙整技術方面的特徵和各種的相關技術,主要用途,成長預測等資料,為您概述為以下內容。

摘要整理

第1章 簡介

第2章 POF的優點

  • 易於連結
  • 耐用性
  • 大口徑
  • 低成本
  • 光纖的成本
  • 傳送器
  • 可空間分割多重化(SDM)
  • 接收器
  • 連接器
  • 檢驗設備
  • 安裝
  • 維護
  • 處理的容易度
  • 安全性
  • 頻寬
  • 其他類型的光纖開發
  • 可望普及於許多市場的POF
  • 標準化的發展
  • 成長可能性
  • 尺寸的問題
  • 活用開發於GOF用的低價元件之優點的PF GI-POF

第3章 銅製電纜·GOF·POF比較

  • 安裝者的見解

第4章 POF的發展的過程與組織

  • 歷史性的觀點
  • 全球各地的POF相關組織

第5章 POF系統的技術性特徵

  • 光纖系統的基本技術因素
  • 光纖的類型
  • 塑膠光纖

第6章 光源

  • LED
  • 共振腔LED(RC-LED)
  • 雷射二極體
  • 垂直諧振面射型雷射(VCSEL)
  • 藍、綠POF光源預測
  • 高速POF接收器

第7章 Optical Connectors and Splicing

  • Connectorization
  • POF連接的類型
  • splicing
  • OptoLock:無連接器
  • 球點連接器

第8章 耦合器

  • 光匯流排與光交換器
  • 利用耦合器的交換器

第9章 POF電纜

第10章 整合光技術

  • 平面波導及其他被動式設備
  • 全像技術

第11章 鏡片

  • 聚合鏡片
  • POF支援的量效率光學concentrator

第12章 Fiber Bragg Gratings

第13章 光放大器

  • 慶應大學
  • 色素POF雷射性能上的係數分析模式
  • 內建信號放大用有機半導體的POF

第14章 檢驗設備

  • OTDR

第15章 POF系統 - 乙太網路範例

第16章 乙太網路POF硬體設備

  • Commercial Silicon for Gigabit Communication over SI-POF
  • Ethernet POF Media Converter for ITU Standard G.hn
  • G.hn Chip Sets
  • Gigabit Ethernet Standard
  • Gigabit Ethernet OptoLock

第17章 POF數據通訊系統範例

  • 簡介
  • 應用範圍
  • 光耦合器
  • 印刷電路板互相連接
  • 數位音頻介面
  • 飛機用數據鏈接
  • 汽車用POF設備
  • LAN
  • IEEE 1394 FireWire
  • 收費處
  • 工廠自動化
  • 醫療用途
  • 高電壓絕緣
  • 家庭網路
  • 檢驗設備
  • POF感測器
  • 安全
  • EMI/RFI
  • 油壓升降機
  • 鐵路
  • Controller Area Network(CAN)
  • POS終端
  • 機器人
  • 可編程控制器
  • 監視錄影機
  • 高速影音
  • 家庭影片
  • 數位電子看板

第18章 POF成本比較

  • Avago白皮書

第19章 POF與相關標準

  • 催促標準化的要素
  • POF標準的趨勢
  • POF標準發展歷史
  • 含POF的目前標準

第20章 零組件與檢查

  • 簡介
  • IEC
  • VDI/VDE
  • 標準的摘要

第22章 POF供應商

  • POF電纜
  • 半導體(收發器)
  • 光源(收發器)
  • 光二極體
  • 連接器
  • 耦合器
  • 檢驗設備
  • splicing
  • 介質轉換器
  • 數據鏈接
  • POF網路
  • 網路電視設備的供應商
  • 其他的POF被動組件
  • 其他的主動組件

第23章 POF零組件價格的趨勢

  • MOST標準的影響
  • POF光纖的價格
  • 電纜
  • cable assembly—
  • POF發射器和接收器
  • POF資料零組件相關的結論
  • graded目錄PMMA POF
  • 全氟化GI-POF
  • 含氯高分子
  • POF零組件的目標價格

第24章 市場促進因素

  • 技術
  • 標準
  • 市場需求
  • 政府的資金提供
  • 終端用戶的啟發
  • 行銷的配合措施
  • 主要企業的缺失
  • 與變革的阻力現有基礎建設

第25章 POF的市場與今後的預測

  • 汽車市場
  • 家電市場
  • 產業用控制市場
  • 住宅市場與網路電視市場
  • 互相連接設備市場
  • 醫療相關市場
  • POF整體市場的可能性

第26章 全球各國的POF產業的動向

第27章 新POF產業的可能性

  • 電纜和光纖
  • 連接器
  • 光源
  • 耦合器
  • 檢驗設備
  • splicing
  • 硬體設備
  • 數據鏈接
  • 流通
  • 設計及技術開發
  • 轉換器
  • 各種系統的廠商

第28章 POF市場上的成功策略

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

The plastic optical fiber (POF) data business is going through a period of extraordinary growth driven by the automotive manufacturers in Europe and by new technology development. Industrial controls and medical applications continue to be the bedrock of the industry, and they, too, are experiencing healthy growth. Unlike the telecommunications field, the POF business covers many industries and is not as vulnerable to industry downturns.

image1

New technological developments in sources, connectors, and fibers are expanding the bandwidth-distance limits of POF into new applications. After many years of playing second fiddle to the glass optical fiber business, POF is now starting to get the recognition it deserves. Some are even saying that POF could be a disruptive technology.

Over the past three years, there has been a dramatic increase in the GI-POF technology and its availability in the market. This has resulted in increased interest by component suppliers and end users. The market for short, high-speed optical links is experiencing extraordinary growth. These links are less than 100 meters, with speeds up to 40Gbps.

The market for POF could never be brighter with the trend to "all optical networks", need for higher bandwidth, EMI protection, lower cost, lighter weight, ease of use and other factors. POF's main competitor copper is fast running out of steam. New applications are starting to appear in data centers, commercial aircraft, unmanned aerial vehicles (UAVs), Internet of Things (IoT), machine vision, sensors for structural health monitoring, and home networking for Ultra High Definition TVs (UHD TV/4K and 8K), to only name a few.

This study presents a comprehensive and historical review of the POF business and should form the basis of future internal market research.

Table of Contents

Foreword

Table of Contents

E.0 Executive Summary

  • E.1.0 Introduction
  • E.2.0 Markets
  • E.2.1 Automobiles
  • E.2.2 Consumer Electronics
  • E.2.3 Industrial Controls
  • E.2.4 Interconnection
  • E.2.5 Home Networks
  • E.2.6 Medical
  • E.2.7 Homeland Security
  • E.3.0 POF as a Disruptive Technology
  • E.4.0 Market Forecasts
  • E.5.0 Technology
  • E.5.1 Fiber Loss Trends
  • E.5.2 Bandwidth Trends
  • E.5.3 Step Index (SI) and Graded Index (GI) PMMA
  • E.5.4 Perfluorinated Graded Index POF (PF GI-POF)
  • E.5.5 Other POF Technologies
  • E.6.0 POF Associations and Interest Groups Trends
  • E.7.0 What are the Major Impediments to Further Developments in the POF Industry?
  • E.8.0 New POF developments in 2012/2013
  • E.9.0 Opportunities
  • E.10.0 Market Demand

1.0 Introduction

2.0 Why POF?

  • 2.1 Ease of connectorization
  • 2.2 Durability
  • 2.3 Large diameter
  • 2.4 Lower Costs
  • 2.5 Fiber Costs
  • 2.6 Transmitters (Transceivers, Receivers)
  • 2.7 Space Division Multiplexing is Possible
  • 2.8 Receivers
  • 2.9 Connectors
  • 2.10 Test Equipment
  • 2.11 Installation
  • 2.12 Maintenance
  • 2.13 Ease of Handling
  • 2.14 Safety
  • 2.15 Bandwidth
  • 2.16 Developments of other types of fibers
  • 2.17 Many markets are open to POF
  • 2.18 Standards Situation is Improved
  • 2.19 Growth Potential
  • 2.20 Size Matters
  • 2.21 PF GI-POF Takes Advantage of Low-cost Components Developed for GOF

3.0 Comparison Between Copper, GOF, and POF

  • 3.1 An Installer's View
  • 3.1.1 Installation Issues
  • 3.1.2 Testing
  • 3.1.2.1 Do-it-yourself POF Kits
  • 3.1.2.2 Connectorless Connetions

4.0 POF Historical Development and Organization

  • 4.1 Historical Perspective
  • 4.2 POF Organizations Worldwide
    • 4.2.1 POF Developments in Japan
    • 4.2.2 POF in the US
    • 4.2.3 POF in Europe
      • 4.2.3.1 France
      • 4.2.3.2 Germany
      • 4.2.3.3 European Commission
    • 4.2.4 POF in Korea
    • 4.2.5 POF in Australia
    • 4.2.6 POF in Brazil
    • 4.2.7 POF in China
    • 4.2.8 Others

5.0 Technical Characteristics of POF Fibers Systems

  • 5.1 Basic Technical Components of Optical Fiber Systems
  • 5.2 Types of Optical Fibers
    • 5.2.1 Step Index Fibers
    • 5.2.2 Multimode Graded Index Fiber (MMF)
    • 5.2.3 Single-mode Fibers (SMF)
  • 5.3 Plastic Optical Fibers
    • 5.3.1 Materials used for POF
    • 5.3.2 Attenuation
    • 5.3.3 Perfluorinated POF
      • 5.3.4.1 How Numerical Aperture of Fiber Affects Bandwidth
      • 5.3.4.2 Methods to Increase Bandwidth
      • 5.3.4.3 Increased Bandwidth Using Low-NA Source
    • 5.3.5 Graded Index PMMA POF (GI-POF)
    • 5.3.6 Perflourinated (PF) Graded Index POF (GI-POF)
    • 5.3.7 Partially Chlorinated GI-POF
      • 5.3.7.1 New GI PTCEMA
    • 5.3.8 High-temperature Plastic Optical Fibers
      • 5.3.8.1 Polystyrene
      • 5.3.8.2 The Advantages of Polystyrene
    • 5.3.9 Photonic Crystal Microstructured Polymer Optical Fibers
      • 5.3.9.1 Microstructured Polymer Fibers
    • 5.3.10 Summary Performance of PMMA and PF-GI POF (SI and GI)
    • 5.3.11 Environmental Effects on POF
    • 5.3.12 Manufacturing Methods of POF
      • 5.3.12.1 Extrusion
      • 5.3.12.2 Preform Drawing
      • 5.3.12.3 Manufacturing Graded Index PMMA POF
      • 5.3.12.4 Manufacturing PF GI-POF
      • 5.3.12.5 Continuous Extrusion Process
      • 5.3.12.5 Continu ous Extrusion Process

6.Light Sources

  • 6.1 LEDs
    • 6.1.1 Low NA LED
    • 6.1.2 Low NA LED Source Perspective for POF Data Link
    • 6.1.3 Materials and Available LED Wavelengths
    • 6.1.4 Gigabit Links Using LEDs
  • 6.2 Resonant Cavity LEDs (RC-LEDs)
  • 6.3 Laser Diodes
  • 6.4 Vertical Cavity Surface Emitting Lasers (VCSELs)
    • 6.4.1 Data Links Using Red VCSELS
    • 6.4.2 Red VCSEL Transceivers for Gigabit Transmission over POF
  • 6.5 Outlook for POF Green and Blue Sources
  • 6.6 High Speed POF Receivers

7.0 Optical Connectors and Splicing

  • 7.1 Connectorization
    • 7.1.1 POF Connector Requirements
    • 7.1.2 ATM Forum
  • 7.2 POF Connect Types
    • 7.2.1 PN Connector
    • 7.2.2 Small Multimedia Interface (SMI)
    • 7.2.3 IDB-1394 POF Interface and Latch Connector for Automotive Use
    • 7.2.4 Packard Hughes Interconnect
    • 7.2.5 Optical Mini Jack
    • 7.2.6 Panduit Poly-Jack - RJ-45 Type
    • 7.2.7 MOST Automotive Connector and Header System
  • 7.3 Splicing
    • 7.3.1 Brookhaven Industrial Laboratory
    • 7.3.2 Mechanical Splices
    • 7.3.3 Ultrasonic Splicing
  • 7.4 OptoLock - Connectorless Connection
  • 7.5 Ballpoint Connector

8.0 Couplers

  • 8.1 Optical Busses and Cross-connects
  • 8.2 Switches using Couplers

9.0 POF Cables

10.0 Integrated Optics

  • 10.1 Planar Waveguides and Other Passive Devices
  • 10.2 Holograms

11.0 Lenses

  • 11.1 Polymeric Lenses
    • 11.1.1 Ball Point Pen Collimator Lens
  • 11.2 High-efficiency Optical Concentrators for POF

12.0 Fiber Bragg Gratings

13.0 Optical Amplifiers

  • 13.1 Keio University
  • 13.2 Model for Analyzing the Factors in the Performance of Dye-Doped POF Lasers
  • 13.3 Plastic Optical Fiber with Embedded Organic Semiconductors for Signal Amplification

14.0 Test Equipment

  • 14.1 OTDRs

15.0 POF Systems - Ethernet Example

16.0 POF Hardware for Ethernet

  • 16.1 Commercial Silicon for Gigabit Communication over SI-POF
  • 16.2 Ethernet POF Media Converter for ITU Standard G.hn
  • 16.3 G.hn Chip Sets
  • 16.4 Gigabit Ethernet Standard
  • 16.5 Gigabit Ethernet OptoLock

17.0 Illustrative Examples of POF Data Communications Applications

  • 17.1 Introduction
  • 17.2 Range of Applications 17.3 Optocoupler Applications
  • 17.4 Printed Circuit Board (PCB) Interconnects
  • 17.5 Digital Audio Interface
  • 17.6 Avionic Data Links
    • 17.6.1 Practical Experience in Military and Civilian Avionic Systems
    • 17.6.2 McDonald Douglas
    • 17.6.3 Boeing
    • 17.6.4 Requirements for POF in Commercial Aircraft -Boeing
  • 17.7 Automotive Applications of POF
    • 17.7.1 Automotive Harness Trends
    • 17.7.2 Increase in Electronic Content
      • 17.7.2.1 Different Data Busses in Automobiles
    • 17.7.3 Automobile Standards
      • 17.7.3.1 MOST Standard
      • 17.7.3.2 1394 Automotive Working Group and IDB
  • 17.8 Local Area Networks
    • 17.8.1.1 POF vs. Glass Comparison
    • 17.8.1.2 Operating Experience
    • 17.8.2 Codenoll
    • 17.8.3 Mitsubishi Rayon
    • 17.8.4 NEC Corp. Ethernet
  • 17.9 IEEE 1394 FireWire
    • 17.9.1 Markets for 1394
    • 17.9.2 Transmission Media
    • 17.9.3 1394 as a Home Network
      • 17.9.3.1 IEEE 1394 Proposed Costs
  • 17.10 Tollbooth Applications
  • 17.11 Factory Automation
  • 17.12 Medical Applications
  • 17.13 High Voltage Isolation
  • 17.14 Home Networks
    • 17.14.1 CEBus
    • 17.14.2 Over the Top (OTT)
    • 17.14.3 "Capillary of Light" Home Network
  • 17.15 Test Equipment
  • 17.16 POF Sensors
  • 17.17 Security (Tempest)
  • 17.18 EMI/RFI
  • 17.19 Hydraulic Lifts
  • 17.20 Trains
  • 17.21 Controller Area Network (CAN)
  • 17.22 Point-of-sale Terminals
  • 17.23 Robotics
  • 17.24 Programmable Controllers (PLC)
  • 17.25 Video Surveillance
  • 17.26 High-speed Video
  • 17.27 Home Video
  • 17.28 Digital Signage

18.0 POF Cost Comparisons

  • 18.1 Avago Cost Trade-off White Paper

19.0 POF and Related Standards

  • 19.1 What drives standards?
  • 19.2 Trends in POF Standards
  • 19.3 History of the Development of POF Standards
    • 19.3.1 IEC
  • 19.4 Present Standards that Include POF
    • 19.4.1 Process Control
      • 19.4.1.1 Profibus
      • 19.4.1.2 SERCOS (Serial Realtime Communication System)
      • 19.4.1.3 Interbus
    • 19.4.2 Automotive Standards
      • 19.4.2.1 MOST
      • 19.4.2.2 IDB-1394
      • 19.4.2.3 ByteFlight
      • 19.4.2.4 CEA Aftermarket
    • 19.4.3 Computer Standards
      • 19.4.3.1 ATM
      • 19.4.3.2 IEEE-1394
      • 19.4.3.3 Storage Area Networks
      • 19.4.3.4 Supercomputers/Servers
      • 19.4.3.5 Datacenters
    • 19.4.4 Home Standards
      • 19.4.4.1 CEBUS
      • 19.4.4.2 ATM Forum Residential Broadband
      • 19.4.4.3 IEEE-1394 Home Networking
      • 19.4.4.4 ITU G.h
    • 19.4.5 Consumer Electronics and "Over the Top"
      • 19.4.5.1 Active Optical Cables
      • 19.4.5.2 Over-the-Top-Enabled Devices

20.0 Components and Testing

  • 20.1 Introduction
  • 20.2 IEC
  • 20.3 VDI/VDE
  • 20.4 Standards Summary

21.0 POF Components - Present Status

  • 21.1 POF Fibers
    • 21.1.1 Mitsubishi Rayon
    • 21.1.2 Asahi Kasei
    • 21.1.3 Toray Industries Inc.
    • 21.1.4 Shenzhen Dasheng Optoelectronic Technology Co. Ltd.
    • 21.1.5 Asahi Glass
    • 21.1.6 Nanoptics
    • 21.1.7 OFS-Fitel (now Chromis Fiber Optics)
    • 21.1.8 Redfern Polymer (Cactus Fiber) (Kiriama)
    • 21.1.9 Nexans
    • 21.1.10 Fuji Film
    • 21.1.11 Luvantix
    • 21.1.12 Optimedia
    • 21.1.13 Jiang Daisheng Co. Ltd.
    • 21.1.14 Sekisui Chemical Company

22.0 POF Suppliers

  • 22.1 POF Cables
  • 22.2 Semiconductors (Transceivers) for POF
    • 22.2.1 KDPOF
    • 22.2.2 CoolSilicon/CoolPOF
  • 22.3 Light Sources (Transceivers)
    • 22.3.1 Light Emitting Diodes (LEDs)
    • 22.3.2 Resonant Cavity LEDs (RC-LEDs)
    • 22.3.3 Laser Diodes
    • 22.3.4 VCSELs
  • 22.4 Photodiodes
  • 22.5 Connectors
    • 22.5.1 Connectorless Technologies
  • 22.6 Couplers
  • 22.7 Test Equipment
  • 22.8 Splicing
  • 22.9 Media Converters
  • 22.10 Data Links
  • 22.11 POF Networks
  • 22.12 IPTV Equipment Providers
  • 22.13 Other POF Passive Components
  • 22.14 Other Active Components

23.0 POF Component Price Trends

  • 23.1 Impact of the MOST Standard
  • 23.2 POF Fiber Pricing
    • 23.2.1 Step Index Fibers
    • 23.2.2 Graded Index POF
  • 23.3 Cables
  • 23.4 Cable Assemblies
  • 23.5 POF Transmitters and Receivers
  • 23.5.1 MOST Pricing
  • 23.6 Conclusions for POF Data Components
  • 23.7 Graded Index PMMA POF
  • 23.8 Perfluorinated GI-POF
  • 23.9 Partially Chlorinated Polymer
  • 23.10 Price targets for POF Components

24.0 Market Drivers

  • 24.1 Technology
  • 24.2 Standards
  • 24.3 Market Needs
  • 24.4 Government Funding
  • 24.5 Education of End Users
  • 24.6 Marketing Push
  • 24.7 Lack of Major Player
  • 24.8 Resistance to Change and Imbedded Infrastructure

25.0 POF Markets and Forecasts

  • 25.1 Automotive Market
    • 25.1.1 How Big is the Market?
  • 25.2 Consumer Electronics Market
    • 25.2.1 Connected TV Device Ownership
  • 25.3 POF Industrial Controls Market and IoT Market
  • 25.4 Home Market and IPTV / Ultra HD TV (4K&8K)
    • 25.4.1 Market Forecast
    • 25.4.2 UHD TV 4K/8K
  • 25.5 Interconnect Market
  • 25.6 Medical Market
  • 25.7 Total POF Market Potential

26.0 POF Activities in Various Countries

  • 26.1 US
  • 26.2 Plastic Optical Fiber Organization in Japan
  • 26.3 POF in Europe
    • 26.3.1 French Plastic Optical Fibre Club (FOP)
    • 26.3.2 POF in Germany
  • 26.3.3 POF in the UK
  • 26.4 POF in Brazil
  • 26.5 POF in Korea
  • 26.6 Spain
  • 26.7 Australia

27.0 Opportunities in the Emerging POF Business

  • 27.1 Cables and Fiber
  • 27.2 Connectors
  • 27.3 Sources
  • 27.4 Couplers
  • 27.5 Test Equipment
  • 27.6 Splicing
  • 27.7 Hardware
  • 27.8 Data Links
  • 27.9 Distribution
  • 27.10 Design and Engineering
  • 27.11 Converters
  • 27.12 Systems Suppliers

28.0 Strategies for Success in the POF Market

References

  • Appendix 1: Avago White Paper on POF Sensors
  • Appendix 2: Avago White Paper on Fiber vs. Copper Links
  • Appendix 3: 15 Years Polymer Optical Fiber Application Center - A Summary
  • Appendix 4: List of POF Conferences, POF Symposia and POF WORLD
  • Appendix 5: Mitsubishi Pencil and KPRI's 4K/8K connector through multiple GI POF micro-collimators based on ball-point pen technology
Back to Top