Cover Image
市場調查報告書

新一代功率半導體:市場,材料,技術

Next-Generation Power Semiconductors: Markets, Materials, Technologies

出版商 Information Network 商品編碼 223488
出版日期 內容資訊 英文
商品交期: 最快1-2個工作天內
價格
Back to Top
新一代功率半導體:市場,材料,技術 Next-Generation Power Semiconductors: Markets, Materials, Technologies
出版日期: 2016年11月01日 內容資訊: 英文
簡介

在矽基的既有功率半導體已接近其理論上的界限中,具有出色材料特性及大能隙的碳化矽(SiC)和氮化鎵(GaN)基功率半導體大大可望成為新一代功率半導體,其中IGBT和Power MOSFET更預測將成為市場成長原動力。功率半導體的市場規模預計從2011年的142億美元擴大到2013年的167億美元,這期間預測年平均成長率將為3.7%。此外新一代功率半導體市場由於大幅成長,預測將惠及加工設備業界,尤其是矽基板上的GaN磊晶成長流程相關的設備廠商和覆晶產業的設備廠商,預測皆能獲得佳績。

本報告涵蓋新一代功率半導體市場,提供您以再生能源和電動車為首的用途和半導體市場上的地位及今後成長領域等詳細分析,再加上SiC和GaN的下一代半導體的製造技術和今後的課題,主要企業簡介等資訊。

第1章 簡介

  • 差異化要素製造流程
  • 與傳統的MOS設備不同的層積結構設備
  • 超接面流程

第2章 功率半導體的用途

  • 再生能源領域的功率半導體
    • 太陽能光電發電
    • 風力發電
  • 混合動力汽車/電動車領域的功率半導體
    • 汽車產業的大流程
    • 能隙的大設備
  • LED照明領域的功率半導體
  • 產業用馬達驅動裝置領域的功率半導體
  • 智慧家庭市場功率半導體
  • GaN及SiC的最終用途市場預測

第3章 市場分析

  • 半導體市場上功率半導體的地位
  • IGBT和Power MOSFET的潛在成長性
  • 最終用途市場
  • 能隙大的功率半導體市場

第4章 新一代功率半導體

  • 對於克服矽限制的期待感
  • 對下一代基板的SiC和GaN的期待感
  • 能隙大的半導體優點
  • SiC和GaN比較
    • 材料特性
    • 材料品質
    • SiC橫型單元
    • SiC縱型單元
    • GaN橫(側)型單元
  • SiC設備的製造
    • SiC的散裝單結晶成長和磊晶成長
    • 表面處理
    • 蝕刻
    • 光刻
    • 離子布植
    • 表面穩定化
    • 金屬化
  • GaN設備的製造
    • GaN的課題
      • 價格
      • 可靠性
      • 零組件的包裝和耐熱性
      • 管理
      • 設備建模
    • 包裝

第5章 主要企業簡介

  • 功率半導體廠商
    • Infineon
    • 三菱電機
    • 東芝
    • STMicroelectronics
    • Vishay
    • International Rectifier
    • Fairchild
    • 富士電機
    • 瑞薩
    • Semikron
    • NXP Semiconductors
  • SiC晶圓相關的企業
  • GaN晶圓相關的企業
  • 推進新一代功率半導體開發的企業簡介
    • 三菱電機
    • 富士電機集團
    • 東芝
    • Rohm
    • Sankei電氣
    • 新電元工業
    • Infineon
    • Microsemi
    • Cree
    • GeneSiC Semiconductor
    • Semisouth Laboratories
    • United Silicon Carbide
    • MicroGaN
    • Powerex
    • Fairchild
    • International Rectifier
    • Nitronix

圖表

目錄

The rapid growth of the power semiconductor market in recent years has been driven by the proliferation of computer and consumer electronics, such as desktop computers, notebooks, netbooks, smartphones, flat panel displays and portable media players that require sophisticated power management to improve power efficiency and extend battery life. The worldwide markets are analyzed and projected.

The commercial battle for next-generation power semiconductors is evolving. IGBTs, SiC and other technologies are geared for the niche-oriented markets at 1,700 volts and higher. But what is the best technology for the larger 600- and 1,200-volt markets? Both super-junction MOSFETs and IGBTs are ramping up on 300mm wafers, making them less expensive than GaN and SiC. In comparison, SiC MOSFETs are ramping up on 100mm wafers, while GaN-on-silicon is running on 150mm substrates.

This report analyzes and forecasts the traditional power semiconductor market as well as next generation devices. Market shares of vendors by type are presented

Table of Contents

Chapter 1 Introduction

  • 1.1 Manufacturing Processes Are Differentiation Factors
  • 1.2 Vertical Structure Devices Differ From Usual MOS Planar Structure
  • 1.3 Super Junction Processes

Chapter 2 Applications of Power Semiconductors

  • 2.1 Power Semiconductors in Renewable Energy
    • 2.1.1 Solar
    • 2.1.2 Wind
  • 2.2 Power Semiconductors in Hybrid & Electric Vehicles
    • 2.2.1 Automotive Megatrends
    • 2.2.2 Wide Bandgap Devices for HEVs/EVs
  • 2.3 Power Semiconductors in LED Lighting
  • 2.4 Power Semiconductors in Industrial Motor Drives
  • 2.5 Power Semiconductors in Smart Home Market
  • 2.6 GaN and SiC Market Forecast For End Applications

Chapter 3 Market Analysis

  • 3.1 Position of Power Semiconductors in Semiconductor Market
  • 3.2 Growth Potential of IGBTs and Power MOSFETs
  • 3.3 End Application Markets
  • 3.4 Wide Bandgap Power Semiconductor Market

Chapter 4 Next-Generation Power Semiconductors

  • 4.1 Expectations for Overcoming Silicon's Limitations
  • 4.2 Expectations Of SiC and GaN as Next-Generation Substrates
  • 4.3 Benefits of Wide Band Gap Semiconductors
  • 4.4 SiC versus GaN
    • 4.4.1 Material Properties
    • 4.4.2 Material Quality
    • 4.4.3 SiC Lateral Devices:
    • 4.4.4 SiC Vertical Devices
    • 4.4.5 GaN Lateral Devices
  • 4.5 Fabrication of SiC devices
    • 4.5.1 Bulk and Epitaxial Growth of SiC
      • 4.5.1.1 Bulk Growth
      • 4.5.1.2 Epitaxial Growth
      • 4.5.1.3 Defects
    • 4.5.2 Surface Preparation
    • 4.5.3 Etching
    • 4.5.4 Lithography
    • 4.5.5 Ion Implantation
    • 4.5.6 Surface Passivation
    • 4.5.7 Metallization
  • 4.6 Fabrication of GaN devices
    • 4.6.1 GaN Challenges
      • 4.6.1.1 Costs
      • 4.6.1.2 Reliability
      • 4.6.1.3 Component Packaging and Thermal Reliability
      • 4.6.1.4 Control
      • 4.6.1.5 Device Modeling
  • 4.7 Packaging

Chapter 5 Company Profiles

  • 5.1 Power Semiconductor Companies
    • 5.1.1 Infineon
    • 5.1.2 Mitsubishi
    • 5.1.3 Toshiba
    • 5.1.4 STMicroelectronics
    • 5.1.5 Vishay
    • 5.1.6 International Rectifier
    • 5.1.7 Fairchild
    • 5.1.8 Fuji Electric
    • 5.1.9 Renesas
    • 5.1.10 Semikron
    • 5.1.11 NXP Semiconductors
  • 5.2 SiC Wafer-Related Companies
  • 5.3 GaN Wafer-Related Companies
  • 5.4 Profiles of Companies with Next-Generation Activities
    • 5.4.1 Mitsubishi Electric
    • 5.4.2 Fuji Electric Holdings
    • 5.4.3 Toshiba
    • 5.4.4 Rohm
    • 5.4.5 Sanken Electric
    • 5.4.6 Shindengen Electric
    • 5.4.7 Infineon
    • 5.4.8 Microsemi
    • 5.4.9 Cree
    • 5.4.10 GeneSiC Semiconductor
    • 5.4.11 Semisouth Laboratories
    • 5.4.12 United Silicon Carbide
    • 5.4.13 MicroGaN
    • 5.4.14 Powerex
    • 5.4.15 Fairchild
    • 5.4.16 International Rectifier
    • 5.4.17 Nitronix

List of Tables

  • 1.1 Evolution Of IGBT Chip Structure
  • 1.2 Effects Of Miniaturization Of IGBT Chip
  • 1.3 SiC Trench-Type MOSFET And Resistance Reduction As Compared With DMOSFET
  • 1.4 Planar And Vertical (Trench) MOSFET
  • 1.5 Schematic Of A FinFET
  • 1.6 Schematic Of A MOSFET And Super Junction MOSFET
  • 1.7 Process Flow For Super Junction MOSFET
  • 2.1 Forecast Of Solar Power
  • 2.2 Full Bridge IGBT Topology
  • 2.3 PV Inverter Market Distribution
  • 2.4 Block Diagram Of Microcontroller-Based Inverter
  • 2.5 Worldwide Wind Turbine Shipments
  • 2.6 Top Wind Power Capacity by Country
  • 2.7 Bill Of Materials For A Typical 30-50kw Inverter
  • 2.8 A Simple Diagram Of A HEV Traction Drive System.
  • 2.9 A More Complex Diagram Of PEEM In A Plug-In Hybrid Electric Vehicle (PHEV)
  • 2.10 Conducting And Switching Loses For Inverter
  • 2.11 Unit Pricing Trends In Power Semiconductors
  • 2.12 HEV/EV Shipment Forecast
  • 2.13 System And Component Costs For Wide Bandgap Semiconductors
  • 2.14 Vertical And Lateral HEMY
  • 2.15 GaN Lateral And GaN Vertical HEMTs In EVs
  • 2.16 Market Drivers For LED Biz And Applications
  • 2.17 SSL Vs. Classical Technologies
  • 2.18 LED Performance Vs. Traditional Light Sources
  • 2.19 Energy Production And Use Comparison
  • 2.20 Typical LED Drive Circuit
  • 2.21 Integration Of LED And LED Driver Using TSV
  • 2.212 Simple Power MOSFET Motor Controller
  • 2.23 Basic Operating Principle Of Inverter
  • 2.24 System Block Diagram Of An Air Conditioner
  • 3.1 Mitsubishi's IGBT (Insulated Gate Bipolar Transistor) Generations
  • 3.2 Infineon's MOSFET Generations
  • 3.3 Intel's FinFET Design
  • 3.4 Fuji's MOSFET versus Super Junction MOSFET
  • 3.5 NEC's GaN-on-Si Power Transistor
  • 3.6 Fujitsu's GaN-on-SiC HEMT Transistor
  • 3.7 Power Semiconductor Market Forecast
  • 3.8 Power Semiconductor Market Shares
  • 3.9 IGBT Module Market Shares
  • 3-10 IGBT Discrete Market Shares
  • 3.11 MOSFET Market Shares
  • 3.12 Market Shares For Super Junction MOSFET
  • 3.13 SJ MOSFETs as an Interim Solution
  • 3.14 Power Transistor Market Share By Application
  • 3.15 Power Discrete Market For Renewable Energy
  • 3.16 Power Discrete Market Hybrid For and Electric Vehicles
  • 3.17 Power Discrete Market For General LED Lighting
  • 3.18 Power Discrete Market For Industrial Motor Control
  • 3.19 Forecast of Widebandgap Semiconductor Market
  • 4.1 Silicon-Based Devices Reaching Maturity
  • 4.2 Enhancement Mode GaN On Si Transistor
  • 4.3 AlGaN/GaN HEMT, GaN MOSFET, MOS-HEMT
  • 4.4 GaN HEMT Material Structure On Si Substrate
  • 4.5 Power Package Integration Roadmap

List of Figures

  • 2.1 Product Families And The Principal End Uses Of Power Products
  • 2.2 Advantages And Disadvantages Of GaN Lateral HEMTs
  • 2.3 Light Source Comparison
  • 2.4 Forecast Of GaN And SiC Power Devices By End Applications
  • 3.1 Market Shares For Japanese Companies
  • 4.1 Physical Properties Of Select Semiconductor Materials
  • 4.2 Wide Bandgap Material Properties
  • 4.3 Lattice Constant And CTE Of Semiconductor Starting Material
  • 4.4 GaN FET Vs Si MOSFET Characteristics
  • 4.5 Standard Chemical Solution For Surface Preparation Of SiC Substrates
  • 4.6 Interface Trap Densities For 4H-SiC Under Different Process Conditions.
Back to Top