Cover Image
市場調查報告書

自動駕駛技術對轉向器開發帶來的影響 - 北美·歐洲:2017年

Impact of Autonomous Driving on Steering Development Technology in Europe and North America, 2017

出版商 Frost & Sullivan 商品編碼 596068
出版日期 內容資訊 英文 62 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
自動駕駛技術對轉向器開發帶來的影響 - 北美·歐洲:2017年 Impact of Autonomous Driving on Steering Development Technology in Europe and North America, 2017
出版日期: 2017年12月01日 內容資訊: 英文 62 Pages
簡介

在汽車搭載電動方向盤(EPS)標準化的趨勢下,要實現自主駕駛,廠商技術陣容便要面對減輕發動時的動力損失對策、收納不需要的方向盤之其他駕駛座設計,與現行技術的相容,操作上的人因等許多課題。

本報告考察在北美·歐洲,因自動駕駛技術的興起所產生的轉向器開發的技術課題與其影響。

第1章 摘要整理

  • 摘要整理 - 亮點
  • 轉移到SbW (Steer-by-Wire)技術
  • 重要發現
  • SbW,EPS(Electric Power-Steering),EHPS(Electric Hydraulic Power-Steering),HPS(Hydraulic 比較Power-Steering)
  • 主要的結論與未來發展預測

第2章 調查的範圍,目的,背景,方法

  • 調查範圍
  • 調查的意圖和目的
  • 該調查應闡明的主要疑問點
  • 背景調查
  • 調查方法

第3章 產品的市場區隔和定義

  • 產品區隔
  • 產品定義
  • Society of Automotive Engineers(SAE)定義
  • 車輛市場區隔

第4章 法律規章

  • UNECE - 79項
  • UNECE - 79項(繼續)
  • UNECE - 修改79項
  • ISO 26262(IEC 61508一部分)

第5章 自動駕駛的轉向器機構要件

  • 自動防護故障(安全停止)機構 vs. 故障操作系統
  • 從故障自動防護轉換到故障操作系統
  • Future Steering System Development with Driver Out-of-the-Loop

第6章 減輕「輔助損失」

  • 協助損失緩解解決方案
  • 減輕動力方向盤輔助動力損失的配合措施
  • 減輕動力方向盤輔助動力損失的配合措施(續)

第7章 影響轉向器技術及駕駛盤的大趨勢

  • 各地區自動駕駛系統藍圖
  • 主動和被動安全系統藍圖
  • 影響轉向技術和車輪的大趨勢
  • 今後的汽車駕駛座及客艙 - 主要5大趨勢

第8章 自動駕駛對轉向器模組的影響

  • 自動駕駛的實行技術
  • 線控轉向,自動駕駛和電動車
  • 駕駛盤 - 未來像
  • 駕駛盤 - 未來像(續)

第9章 線控轉向

  • 各線控轉向機構比較
  • 線控轉向 - 未來的系統結構
  • 自動駕駛對SbW的影響

第10章 今後的轉向器機構

  • 轉向器機構要件和自動化層級的變化
  • 自動駕駛技術開發的未來方案
  • 混合轉向器機構
  • 案例研究 - Jaguar攜帶式智能方向盤概念
  • 案例研究 - 大眾的伸縮式駕駛盤概念

第11章 成長機會及企業的行動

  • 成長機會 - 汽車廠商,TSP(Telematics Services 由於Provider)的投資和聯盟
  • 成功·成長的必需策略

第12章 結論與未來發展預測

  • 主要的結論與未來發展預測
  • 結論 - 3個大預言
  • 免責聲明

第13章 附錄

  • 使用的簡稱·縮寫
  • 市場工程技術
目錄
Product Code: MD82-18

Level 5 Autonomous Vehicles to Collapse Traditional Steering Value Chains by Rendering Mechanical Linkages and Steering Wheels Redundant

Electric power steering (EPS) is more of less a standard fitment across most of the vehicle models. However, autonomous driving poses several interesting challenges to the steering technology community. First, once vehicles start to operate by themselves, steering systems will expect to cater to loss-of-assist mitigation in order to provide a safety net as and when the EPS powerpack fails to provide assist for steering the vehicle. This will therefore force steering suppliers to migrate from fail safe systems to fail operational systems for steering.

Second, autonomous driving does not require humans to drive the vehicle, in which case the use of steering wheel is made redundant. This then allows OEMs and steering suppliers to concentrate on technologies that will help either eliminate the steering wheel or allow the steering to retract to the dashboard if not required. Keeping these in mind OEMs have showcased future cockpit concepts, but to realize such concepts steer-by-wire must be the system of choice for OEMs.

However, the major stumbling block for the steering suppliers is the regulatory compliance. As per regulation automatically controlled steering function (ACSF) becomes operational, this shall be indicated to the driver and the control action shall be automatically disabled if the vehicle speed exceeds the set limit of 10 km/hr by more than 20 percent or the signals to be evaluated are no longer being received. Any termination of control shall produce a short but distinctive driver warning by a visual signal and either an acoustic signal or by imposing a tactile warning signal on the steering control. Regulations like these and the Vienna convention (UN ECE R79) which does not allow for hands off driving are being modified in order to incorporate autonomous functionality of vehicles.

Table of Contents

1. EXECUTIVE SUMMARY

  • Executive Summary-Highlights
  • Technology Migration to SbW
  • Key Findings
  • SbW vs. EPS vs. EHPS vs. HPS
  • Key Conclusions and Future Outlook

2. RESEARCH SCOPE, OBJECTIVES, BACKGROUND, AND METHODOLOGY

  • Research Scope
  • Research Aims and Objectives
  • Key Questions this Study will Answer
  • Research Background
  • Research Methodology

3. PRODUCT SEGMENTATION AND DEFINITIONS

  • Product Segmentation
  • Product Definition
  • Society of Automotive Engineers (SAE) Definitions
  • Vehicle Segmentation

4. REGULATIONS

  • UNECE- Reg. 79
  • UNECE- Reg. 79 (continued)
  • Amendments to UNECE- Reg. 79
  • ISO 26262 (Part of IEC 61508)

5. STEERING SYSTEM REQUIREMENTS FOR AUTONOMOUS DRIVING

  • Fail-safe System versus Fail-operational System
  • Migration from Fail-safe to Fail-operation Steering System
  • Future Steering System Development with Driver Out-of-the-Loop

6. LOSS-OF-ASSIST MITIGATION

  • Loss-of-Assist Mitigation Solutions
  • Approaches to Mitigate Loss-of-Power Steering Assist
  • Approaches to Mitigate Loss-of-Power Steering Assist (continued)

7. MEGA TRENDS IMPACTING STEERING TECHNOLOGY AND WHEEL

  • Roadmap of Automated Driving Systems by Region
  • Roadmap of Active and Passive Safety Systems
  • Mega Trends Influencing Steering Technology and Wheel
  • Car Cockpits and Cabins of the Future-Top 5 Mega Trends

8. IMPACT OF AUTONOMOUS DRIVING ON STEERING MODULE

  • Enabling Technologies for Autonomous Driving
  • SbW, Autonomous Driving and Electric Vehicles
  • Steering Wheel-Concepts of the Future
  • Steering Wheel-Concepts of the Future (continued)

9. STEER-BY-WIRE

  • Comparison of SbW Systems
  • SbW-Future System Architecture
  • Effects of Autonomous Driving on SbW

10. FUTURE STEERING SYSTEMS

  • Migration of Steering System Requirements and Automation Levels
  • Future Scenarios For Autonomous Driving Deployment
  • Hybrid Steering Systems
  • Case Study-Jaguar's take-with-you Smart Steering Wheel Concept
  • Case Study-VW's Retractable Steering Wheel Concept

11. GROWTH OPPORTUNITIES AND COMPANIES TO ACTION

  • Growth Opportunity-Investments and Partnerships from OEMs/TSPs
  • Strategic Imperatives for Success and Growth

12. CONCLUSIONS AND FUTURE OUTLOOK

  • Key Conclusions and Future Outlook
  • The Last Word-3 Big Predictions
  • Legal Disclaimer

13. APPENDIX

  • Abbreviations and Acronyms Used
  • Market Engineering Methodology
Back to Top