Cover Image
市場調查報告書

北美、歐洲的小客車剎車技術、革新相關策略性分析

Strategic Analysis of Passenger Car Braking Technology and Innovations in North America and Europe

出版商 Frost & Sullivan 商品編碼 328231
出版日期 內容資訊 英文 52 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
北美、歐洲的小客車剎車技術、革新相關策略性分析 Strategic Analysis of Passenger Car Braking Technology and Innovations in North America and Europe
出版日期: 2015年04月07日 內容資訊: 英文 52 Pages
簡介

汽車廠商現在正在摸索至2020年達成CO2削減標準的方法。因為煞車系統這10年概念、設計沒有戲劇性的變化,廠商方面全面刷新剎車結構,打算削減CO2排放量。透過現在正在開發的功能 (線傳煞車 (BbW)、空氣增壓器等) ,各製造公司可能除去容積高油壓系統。同時,活用低阻力剎車和低質量的剎車零件,能更加削減CO2排放量。

本報告提供北美、歐洲的小客車廠商的現在、未來的剎車技術的開發動向和今後普及預測相關分析、現在正在開發的剎車技術概要和效果、CO2削減效果比較、領先的案例等資訊彙整,為您概述為以下內容。

本報告提供以下問題的答案。

  • 在汽車廠商方面,哪個剎車技術可使性能改善?
  • 質量最佳化的煞車系統,能達成充分的性能強化嗎?
  • 各汽車廠商、剎車供應商,有將剎車阻力壓到1N.m以內的適當解決方案嗎?
  • 氣剎能代替真空剎車現在佔的地位嗎?
  • 線傳煞車 (BbW) ,能克服妨礙市場順利普及的法律上的課題嗎?

第1章 摘要整理

第2章 調查範圍、目的、背景、手法

第3章 煞車系統定義

  • 煞車系統:技術/系統概要
  • 煞車系統:技術/系統的範圍和定義

第4章 低質量剎車零件

  • 低質量剎車零件:摘要
  • 剎車零件的質量減輕的解決方案
  • 實現質量減輕的NAO剎車零件的使用
  • 實現質量降低的設計最佳化
  • 實現質量減輕的結構變化

第5章 低阻力剎車技術

  • 低阻力剎車技術:摘要
  • 低阻力剎車技術主要的績效目標
  • 低阻力剎車技術的達成方式
  • 低阻力實現的被動式牽引器機制
  • 低阻力實現的主動式牽引器機制

第6章 氣剎技術

  • 空氣制動技術:摘要
  • 非電動車、混合動力汽車 (HEV) 用氣剎的主要績效目標
  • 從剎車結構除去真空的優點
  • 最佳業務實踐/案例研究:Bosch的iBooster剎車輔助器

第7章 線傳煞車

  • 線傳煞車 (BbW) 的摘要
  • BbW技術主要的引進推動因素
  • 傳統煞車系統和BbW比較
  • 與傳統剎車BbW比較分析
  • 最佳業務實踐/案例研究:Vienna Engineering EMB

第8章 結論與未來預測

  • CO2削減的各種技術比較分析
  • 主要的結論與未來預測
  • 結論:三大預測
  • 免責聲明

第9章 附錄

目錄
Product Code: M98A-01-00-00-00

Safer and Leaner Systems Force OEMs toward Smarter Alternatives

OEMs are looking for various means to reduce the CO2 emissions required by 2020 standards. Since braking systems have had no drastic concept or design changes in over a decade, OEMs are now reconsidering the whole brake architecture to reduce CO2 emissions. Functions currently under development, such as brake-by-wire and vacuum-less boosters, offer OEMs the opportunity to do away with the bulky hydraulic systems. Simultaneously, technologies such as low brake drag and low mass brake parts further allow OEMs to reduce emissions. This study investigates current and future technologies for the brake system domain in the passenger vehicle market including adoption challenges. The study period is 2014 to 2021.

Key Questions this Study will Answer

  • What braking technologies are being considered by OEMs to achieve better levels of performance?
  • Does a mass-optimized brake system provide sufficient performance enhancement?
  • Does every OEM and brake supplier have the right solution to achieve brake drag of less than 1N.m?
  • Will vacuum-less braking manage to seize the present day vacuum-based configuration?
  • Will BbW ever be able to get around legislative challenges that hinder successful market penetration?

Table of Contents

1. EXECUTIVE SUMMARY

Executive Summary

  • 1. Key Findings
  • 2. Key Findings and Future Outlook
  • 3. Executive Summary-Associated Multimedia

2. RESEARCH SCOPE, OBJECTIVES, BACKGROUND, AND METHODOLOGY

Research Scope, Objectives, Background, and Methodology

  • 1. Research Scope
  • 2. Research Aims and Objectives
  • 3. Key Questions this Study will Answer
  • 4. Research Background
  • 5. Research Methodology
  • 6. Key OEM Groups and Suppliers Compared in this Study

3. BRAKE SYSTEMS-DEFINITIONS

Brake Systems-Definitions

  • 1. Brake System-Technology/System Overview
  • 2. Brake System-Technology/System Scope and Definition
  • 3. Brake System-Technology/System Scope and Definition (continued)

4. LOW MASS BRAKE PARTS

Low Mass Brake Parts

  • 1. Low Mass Brake Parts-Summary
  • 2. Solutions for Achieving Low Mass Brake Parts
  • 3. Use of NAO Brake Parts to Achieve Mass Reduction
  • 4. Design Optimization to Achieve Mass Reduction
  • 5. Architectural Changes to Achieve Mass Reduction

5. LOW DRAG BRAKE TECHNOLOGY

Low Drag Brake Technology

  • 1. Low Drag Brake Technology-Summary
  • 2. Key Performance Goals for Low Drag Brake Technology
  • 3. Means to Achieve Low Drag Brake Technology
  • 4. Passive Retractor Mechanism to Achieve Low Brake Drag
  • 5. Active Retractor Mechanism to Achieve Low Brake Drag

6. VACUUM-LESS BRAKING TECHNOLOGY

Vacuum-less Braking Technology

  • 1. Vacuum-less Braking Technology-Summary
  • 2. Key Performance Goals for Vacuum-less Brakes for non-EV & HEV
  • 3. Advantages of Removing Vacuum from Brake Architecture
  • 4. Best Practice Case Study: Bosch iBooster Brake Booster Overview
  • 5. Best Practice Case Study: Bosch iBooster Brake Booster

7. BRAKE-BY-WIRE

Brake-by-Wire

  • 1. Brake-by-Wire-Summary
  • 2. Key Adoption Drivers for BbW Technology
  • 3. Comparison of BbW with Conventional Brake System
  • 4. Comparative Analysis of BbW with Conventional Brakes
  • 5. Best Practice Case Study: Vienna Engineering EMB Overview
  • 6. Best Practice Case Study: Vienna Engineering EMB

8. CONCLUSIONS AND FUTURE OUTLOOK

Conclusions and Future Outlook

  • 1. Comparative Analysis of Different Technologies for CO2 Reduction
  • 2. Key Conclusions and Future Outlook
  • 3. The Last Word-3 Big Predictions
  • 4. Legal Disclaimer

9. APPENDIX

Appendix

  • 1. Abbreviations and Acronyms Used
  • 2. Abbreviations and Acronyms Used (continued)
  • 3. Relevant Research
  • 4. Methodology
Back to Top