Cover Image
市場調查報告書

歐洲、北美的電動汽車電池用的未來化學技術:策略性分析

Strategic Analysis of Future Battery Chemistries for Electric Vehicles in Europe and North America

出版商 Frost & Sullivan 商品編碼 321514
出版日期 內容資訊 英文 82 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
歐洲、北美的電動汽車電池用的未來化學技術:策略性分析 Strategic Analysis of Future Battery Chemistries for Electric Vehicles in Europe and North America
出版日期: 2014年12月18日 內容資訊: 英文 82 Pages
簡介

EV用電池的許多替代性的化學技術新開發,不過,導入汽車產業可能性最高的是鋰硫電池(Li-S),鋅-空氣電池,鋰空氣電池。

本報告提供今後10∼15年預計汽車產業開發、引進有所發展的EV(電動車)用電池化學技術概要及其普及預測相關分析、各技術概要和現在、未來的普及情形、製造廠單位的技術、市場藍圖、鋰離子電池的主要的開發計劃、電池的回收、貯存相關問題等調查、考察。

本報告提供以下問題的答案。

  • 鋰離子(Li-ion)電池技術現況為何?今後5∼7年的技術進步預計變成怎樣?
  • EV用電池市場未來方案為何?
  • 汽車廠商今後,採用哪個化學技術的可能性高?
  • PHEV、EV的未來技術、市場藍圖為何?
  • 未來的EV用電池化學技術的,目前的開發情形為何?
  • 在EV用的替代性的化學技術的引進時,汽車產業能經驗怎樣的效果?

第1章 摘要整理

第2章 調查範圍、目的、背景、手法

第3章 電動車(EV)市場:概要

  • 電動車的區分
  • 電力推動技術
  • 全球動力傳動市場概要
  • 電動車的銷售額
  • 鋰離子電池的容量分析

第4章 市場概要

  • 市場概要
  • 鋰離子電池的特徵
  • 電動車方案:現在對未來
  • 在鋰離子電池的安全性情上
  • 技術藍圖
  • 電池電池的選擇流程
  • 電池的價值鏈
  • 排放標準的全國規模的引進
  • 對電池製造商全球各地的進出情形

第5章 目前電池用化學技術和比較分析

  • 現在及未來的電池必要條件
  • 未來的儲能
  • 電動車用的各種電池的引進方法
  • 陽極材料(負極)及陰極(陽極)的選項
  • 最適合技術的矩陣:各用途
  • 市場的狀況:現在對未來
  • 比較分析
  • 課題及必要條件

第6章 推動因素、阻礙因素

  • 技術課題
  • 推動因素
  • 阻礙市場要素

第7章 未來的電池用化學技術

  • 空氣鋅:技術概要
  • 空氣鋅的安全對策
  • Li-S(鋰硫電池):技術概要
  • Li-S的安全對策
  • 鋰氣電池:技術概要
  • 鋰氣電池的安全對策
  • 鋰離子電池:技術概要
  • 鋰離子電池的安全對策

第8章 電池的種類相關廠商方面的見解

  • 電動車的行車距離和電池的種類
  • 電池的保證:概要
  • 各製造廠商的公益相關見解

第9章 電池回收

  • 儲能的必要條件
  • 中古電池市場概要
  • 產業上的課題

第10章 案例研究

  • Tesla Gigafactory
  • 對Tesla Gigafactory來說的威脅
  • 豐田汽車的案例研究

第11章 結論與未來預測

  • 主要的結論與未來預測
  • 結論:三大預測
  • 免責聲明

第12章 附錄

  • 汽車的分類
  • 調查手法
目錄
Product Code: MA77-01-00-00-00

Li-S to Emerge as a Top Alternative to Li-ion Post 2020

This strategic insight covers the adoption of different battery chemistries and their types by electric vehicle (EV) manufacturers over the next 10-15 years. Although a number of alternative chemistries in EV batteries are emerging, the most probable candidates have been identified as lithium sulfur, zinc air, and lithium air. The study analyses current and future developments in the mentioned technologies and offers an overview of ongoing research projects on EV batteries. Also included are a market introduction roadmap, a technology roadmap, adoption by OEM, and crucial developments in the lithium ion technology, including discussion of battery recycling and storage. The base year used for analysis is 2014 and forecast span 2015 to 2020.

Key Questions this Study will Answer

  • What is the status of Li-ion battery technology and how will it advance in the next 5-7 years?
  • What is the future scenario of the EV battery market?
  • What future chemistries are likely to be adopted by automakers?
  • What are the technology and market roadmaps for future PHEVs and Evs?
  • What are the on-going developments of future battery chemistries in Evs?
  • What effects would the automotive industry experience to the adoption of alternate battery chemistries in Evs?

Table of Contents

1. EXECUTIVE SUMMARY

Executive Summary

  • 1. Key Findings
  • 2. Executive Summary-Electric Propulsion Technology
  • 3. Future Battery Chemistries
  • 4. Current vs. Future Status
  • 5. Market Introduction Roadmap
  • 6. Comparative Analysis
  • 7. Comparative Analysis (continued)
  • 8. Adoption Level of Different Battery Types
  • 9. Current and Future Battery Requirements
  • 10. Impact on OEMs and Manufacturers
  • 11. Li-ion Battery Capacity Analysis

2. RESEARCH SCOPE, OBJECTIVES, BACKGROUND, AND METHODOLOGY

Research Scope, Objectives, Background, and Methodology

  • 1. Research Scope
  • 2. Research Aim and Objectives
  • 3. Key Questions this Study will Answer
  • 4. Research Background
  • 5. Research Methodology

3. ELECTRIC VEHICLE MARKET OVERVIEW

Electric Vehicle Market Overview

  • 1. Electric Vehicle Segmentation
  • 2. Electric Propulsion Technology
  • 3. Overview of Global Powertrain Market
  • 4. EV Sales
  • 5. Li-ion Battery Capacity Analysis

4. MARKET OVERVIEW

Market Overview

  • 1. Market Overview
  • 2. Properties of Li-ion Batteries
  • 3. Current vs. Future Scenario for EVs
  • 4. Safety Improvement in Li-ion Batteries
  • 5. Technology Roadmap
  • 6. Battery Cell Selection Process
  • 7. Battery Value Chain
  • 8. Implementation of Nationwide Emissions Standards
  • 9. Battery Manufacturers' Global Footprint

5. CURRENT BATTERY CHEMISTRIES AND COMPARATIVE ANALYSIS

Current Battery Chemistries and Comparative Analysis

  • 1. Current and Future Battery Requirements
  • 2. Future Energy Storage
  • 3. Adoption of Battery Types in EVs
  • 4. Anode and Cathode Options
  • 5. Matrix of Technology Suitable by Application
  • 6. Current vs. Future Status
  • 7. Comparative Analysis
  • 8. Challenges and Requirements

6. DRIVERS AND RESTRAINTS

Drivers and Restraints

  • 1. Technology Challenges
  • 2. Drivers
  • 3. Drivers Explained
  • 4. Market Restraints
  • 5. Market Restraints Explained

7. FUTURE BATTERY CHEMISTRIES

Future Battery Chemistries

  • 1. Zn-air Technology Overview
  • 2. Safety Measures for Zn-air
  • 3. Li-S Technology Overview
  • 4. Safety Measures for Li-S
  • 5. Li-air Technology Overview
  • 6. Safety Measures for Li-air
  • 7. Li-ion Technology Overview
  • 8. Safety Measures for Li-ion

8. OEMS' VIEW OF BATTERY TYPES

OEMs' View of Battery Types

  • 1. EV Range and Battery Type
  • 2. EV Range and Battery Type (continued)
  • 3. Battery Warranty Overview
  • 4. Public Interest by OEM

9. BATTERY RECYCLING

Battery Recycling

  • 1. Energy Storage Requirements
  • 2. Second Life of Batteries Market Overview
  • 3. Industry Challenges

10. CASE STUDIES

Case Studies

  • 1. Tesla Gigafactory
  • 2. Threats to the Tesla Gigafactory
  • 3. Tesla Gigafactory
  • 4. Toyota Case Study

11. CONCLUSIONS AND FUTURE OUTLOOK

Conclusions and Future Outlook

  • 1. Key Conclusions and Future Outlook
  • 2. The Last Word-3 Big Predictions
  • 3. Legal Disclaimer

12. APPENDIX

Appendix

  • 1. Vehicle Segmentation
  • 2. Vehicle Segmentation (continued)
  • 3. Methodology
Back to Top