Cover Image
市場調查報告書

全球彈性、伸縮與印刷電子、顯示器奈米技術市場

The Global Market for Nanotechnology in Flexible, Stretchable and Printable Electronics and Displays

出版商 Future Markets, Inc. 商品編碼 355988
出版日期 內容資訊 英文 309 Pages
訂單完成後即時交付
價格
Back to Top
全球彈性、伸縮與印刷電子、顯示器奈米技術市場 The Global Market for Nanotechnology in Flexible, Stretchable and Printable Electronics and Displays
出版日期: 2016年12月18日 內容資訊: 英文 309 Pages
簡介

本報告針對奈米技術、印刷電子、與導電性材料進步進行調查、提供彈性電子/顯示器、伸縮電子/顯示器、印刷電子/顯示器市場、應用發展、與授權技術、材料詳細分析。

第1章 調查方法

第2章 摘要整理

第3章 奈米材料

第4章 彈性、伸縮、與印刷電子、顯示器

  • 碳奈米管
    • 特徵
    • 應用
    • 需求:市場分類
    • 技術成熟度等級 (TRL)
  • 石墨烯
  • 奈纖維
  • 奈米銀
  • 奈米線
  • 量子點
  • 石墨烯、碳量子點
  • 2D材料
    • 黑磷/磷
    • C2N
    • 氮化碳
    • Germanene
    • Graphdiyne
    • 石墨烯
    • 氮化硼
    • 二硫化鉬 (MoS2)
    • 二硫化錸 (ReS2) 與二硒 (ReSe2)
    • Silicene
    • Stanene/tinene
    • 二硒化鎢

第5章 彈性電子、伸縮電子、導電性薄膜、導電性顯示器市場

  • 市場成長促進因素、動向
    • ITO的彈性電子取代
    • 可戴式電子市場成長
    • 可戴式健康監測的成長
    • 汽車產業HMI、顯示器系統成長
    • 觸控技術條件
  • 用途
    • 彈性電子透明電極
    • 電子纖維
    • 電子紙張
    • 可戴式健康監測
    • 汽車HMI、顯示器
    • 量子點顯示器
  • 市場規模、機會
    • 觸控螢幕與ITO的取代
    • 顯示器
    • 可戴式電子
  • 市場課題
    • 競爭材料
    • ITO的成本比較
    • SWNT設備的製造
    • 石墨烯設備的製造
    • 轉換、成長產生的問題
    • 改善表面電阻
    • 奈米銀線表面的高粗度
    • 電子特性
    • 顯示器面板整合問題
  • 用途、產品發展

第6章 導電性油墨、印刷電子

  • 市場成長促進因素、動向
    • 印刷電子需求擴大
    • 傳統型導電油墨的極限
    • 3D印刷市場成長
    • 印刷感應器市場成長
  • 用途
  • 市場規模、機會
    • 整體市場規模
    • 奈米技術、奈米材料機會
  • 市場課題
  • 用途、產品發展

第7章 電子塗層

  • 市場成長推進因素、動向
    • 多機能、活性塗層需求
    • 防水、滲透性
    • 改善外表、降低維修
    • 觸控螢幕的普及
    • 彈性、有機電子有效防止濕度、二氧化碳的需求
    • 電子包裝
    • 光學、光電子光學設備市場成長
    • 比傳統型AR塗層更改善性能與成本
    • 太陽光能源市場的成長
  • 用途
    • 防水奈米塗層
    • 阻擋薄膜
    • 疏水性塗層
    • 防止指紋附著奈米塗層
    • 反射防止奈米塗層
  • 市場規模、機會
    • 整體市場規模
    • 防止指紋附著奈米塗層
    • 防止反射奈米塗層
    • 防水奈米塗層
  • 市場課題
    • 耐久性
    • 分散
    • 成本
  • 用途、產品發展

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

‘The Global Market for Nanotechnology in Flexible, Stretchable and Printable Electronics and Displays ’ examines the markets, application developers and enabling technologies and materials.

The electronics industry will witness significant change and growth in the next decade, and the integration of nanomaterials into products in the electronics sector is gathering pace. Nanomaterials exhibit extraordinary electrical properties, and have a huge potential in electrical and electronic applications such as photovoltaics, sensors, remote health monitoring and medicine, semiconductor devices, displays, conductors, smart textiles and energy conversion devices (e.g., fuel cells, harvesters and batteries).

Market drivers for Nanotechnology in Flexible, Stretchable and Printable Electronics and Displays include:

  • Scaling- Power requirement and performance no longer scale with feature size
  • Growth of mobile wireless devices
  • Growth in the Internet of Things increasing demand for low-power devices, RF and wireless, sensors, energy harvesting devices etc.
  • Electronics entering every area of our lives
  • Growth in flexible electronics needs in the automotive industry
  • Growth in wearables and remote diagnostics in medicine and healthcare
  • Demand for high-resolution, low-power displays

This report is based on an extensive market study of advances in fields such as nanotechnology, printed electronics electronics and conducting materials, and includes:

  • Market drivers and trends
  • Nanomaterials utilized in Flexible, Stretchable and Printable Electronics and Displays
  • Applications
  • Electronic textiles
  • Electronic paper
  • Wearable health monitoring
  • Automotive HMI and displays
  • QD displays market
  • Touchscreens and ITO replacement
  • Conductive films
  • Electronics coatings
  • Application developers

Table of Contents

1. RESEARCH METHODOLOGY

  • 1.1. COMMERCIAL IMPACT RATING SYSTEM
  • 1.2. MARKET CHALLENGES RATING SYSTEM

2. EXECUTIVE SUMMARY

  • 2.1. MARKET DRIVERS AND TRENDS
    • 2.1.1. Scaling
    • 2.1.2. Growth of mobile wireless devices
    • 2.1.3. Internet of things (IoT)
    • 2.1.4. Data, logic and applications moving to the Cloud
    • 2.1.5. Ubiquitous electronics
      • 2.1.5.1. Growth in automotive interior electronics
      • 2.1.5.2. Growth in wearable medical diagnostics
    • 2.1.6. Nanomaterials for new device design and architectures
    • 2.1.7. Carbon and 2D nanomaterials
    • 2.1.8. Industrial collaborations

3. NANOMATERIALS

  • 3.1. Properties of nanomaterials
  • 3.2. Categorization

4. NANOMATERIALS IN FLEXIBLE, STRETCHABLE & PRINTABLE ELECTRONICS & DISPLAYS

  • 4.1. CARBON NANOTUBES
    • 4.1.1. Properties
    • 4.1.2. Applications
    • 4.1.3. Demand by market
    • 4.1.4. Technology readiness level (TRL)
  • 4.2. GRAPHENE
    • 4.2.1. Properties
    • 4.2.2. Applications
    • 4.2.3. Demand by market
    • 4.2.4. Technology readiness level (TRL)
  • 4.3. NANOCELLULOSE
    • 4.3.1. Properties
    • 4.3.2. Applications
    • 4.3.3. Demand by market
    • 4.3.4. Technology readiness level (TRL)
  • 4.4. NANOSILVER
    • 4.4.1. Properties
    • 4.4.2. Applications
    • 4.4.3. Demand by market
    • 4.4.4. Technology readiness level (TRL)
  • 4.5. NANOWIRES
    • 4.5.1. Properties
    • 4.5.2. Applications
    • 4.5.3. Demand by market
    • 4.5.4. Technology readiness level (TRL)
  • 4.6. QUANTUM DOTS
    • 4.6.1. Properties
    • 4.6.2. Applications
    • 4.6.3. Demand by market
    • 4.6.4. Technology readiness level (TRL)
  • 4.7. GRAPHENE AND CARBON QUANTUM DOTS
    • 4.7.1. Properties
    • 4.7.2. Applications
  • 4.8. 2D MATERIALS
    • 4.8.1. Black phosphorus/Phosphorene
      • 4.8.1.1. Properties
      • 4.8.1.2. Applications in electronics
    • 4.8.2. C2N
      • 4.8.2.1. Properties
      • 4.8.2.2. Applications in electronics
    • 4.8.3. Germanene
      • 4.8.3.1. Properties
      • 4.8.3.2. Applications in electronics
    • 4.8.4. Graphdiyne
      • 4.8.4.1. Properties
      • 4.8.4.2. Applications in electronics
    • 4.8.5. Graphane
      • 4.8.5.1. Properties
      • 4.8.5.2. Applications in electronics
      • 4.8.5.3. Properties
      • 4.8.5.4. Applications in electronics
    • 4.8.6. Molybdenum disulfide (MoS2)
      • 4.8.6.1. Properties
      • 4.8.6.2. Applications in electronics
    • 4.8.7. Rhenium disulfide (ReS2) and diselenide (ReSe2)
      • 4.8.7.1. Properties
      • 4.8.7.2. Applications in electronics
    • 4.8.8. Silicene
      • 4.8.8.1. Properties
      • 4.8.8.2. Applications in electronics
    • 4.8.9. Stanene/tinene
      • 4.8.9.1. Properties
      • 4.8.9.2. Applications in electronics
    • 4.8.10. Tungsten diselenide
      • 4.8.10.1. Properties
      • 4.8.10.2. Applications in electronics

5. FLEXIBLE and STRETCHABLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS MARKETS

  • 5.1. MARKET DRIVERS AND TRENDS
    • 5.1.1. ITO replacement for flexible electronics
    • 5.1.2. Growth in the wearable electronics market
    • 5.1.3. Gowth of HMI and display systems in the automotive industry
    • 5.1.4. Touch technology requirements
    • 5.1.5. Energy needs of wearable devices
    • 5.1.6. Increased power and performance of sensors with reduced cost
    • 5.1.7. Growth in the printed sensors market
    • 5.1.8. Growth in the home diagnostics and point of care market
  • 5.2. APPLICATONS
    • 5.2.1. Transparent electrodes in flexible electronics
      • 5.2.1.1. SWNTs
      • 5.2.1.2. Double-walled carbon nanotubes
      • 5.2.1.3. Graphene
      • 5.2.1.4. Silver nanowires
      • 5.2.1.5. Nanocellulose
      • 5.2.1.6. Copper nanowires
      • 5.2.1.7. Nanofibers
    • 5.2.2. Wearable electronics
      • 5.2.2.1. Current state of the art
      • 5.2.2.2. Nanotechnology solutions
    • 5.2.3. Electronic paper
    • 5.2.4. Wearable sensors
      • 5.2.4.1. Current stage of the art
      • 5.2.4.2. Nanotechnology solutions
      • 5.2.4.3. Wearable gas sensors
      • 5.2.4.4. Wearable strain sensors
      • 5.2.4.5. Wearable tactile sensors
    • 5.2.5. Wearable health monitoring
      • 5.2.5.1. Current state of the art
      • 5.2.5.2. Nanotechnology solutions
    • 5.2.6. Wearable energy storage and harvesting devices
      • 5.2.6.1. Current state of the art
      • 5.2.6.2. Nanotechnology solutions
    • 5.2.7. Automotive HMI and displays
    • 5.2.8. Quantum dot displays
      • 5.2.8.1. On-edge (edge optic)
      • 5.2.8.2. On-surface (film)
      • 5.2.8.3. On-chip
      • 5.2.8.4. Quantum rods
      • 5.2.8.5. Quantum converters with red phosphors
  • 5.3. MARKET SIZE AND OPPORTUNITY
    • 5.3.1. Touch panel and ITO replacement
    • 5.3.2. Displays
    • 5.3.3. Wearable electronics
    • 5.3.4. Wearable health monitoring
    • 5.3.5. Wearable energy storage and harvesting devices
  • 5.4. MARKET CHALLENGES
    • 5.4.1. Manufacturing
    • 5.4.2. Competing materials
    • 5.4.3. Cost in comparison to ITO
    • 5.4.4. Fabricating SWNT devices
    • 5.4.5. Fabricating graphene devices
    • 5.4.6. Problems with transfer and growth
    • 5.4.7. Improving sheet resistance
    • 5.4.8. High surface roughness of silver nanowires
    • 5.4.9. Electrical properties
    • 5.4.10. Difficulties in display panel integration
  • 5.5. APPLICATION AND PRODUCT DEVELOPERS(70 company profiles)

6. CONDUCTIVE INKS AND PRINTED ELECTRONICS

  • 6.1. MARKET DRIVERS AND TRENDS
    • 6.1.1. Increased demand for printed electronics
    • 6.1.2. Limitations of existing conductive inks
    • 6.1.3. Growth in the 3D printing market
    • 6.1.4. Growth in the printed sensors market
  • 6.2. APPLICATIONS
  • 6.3. MARKET SIZE AND OPPORTUNITY
    • 6.3.1. Total market size
    • 6.3.2. Nanotechnology and nanomaterials opportunity
  • 6.4. MARKET CHALLENGES
  • 6.5. APPLICATION AND PRODUCT DEVELOPERS(26 company profiles)

7. ELECTRONICS COATINGS

  • 7.1. MARKET DRIVERS AND TRENDS
    • 7.1.1. Demand for multi-functional, active coatings
    • 7.1.2. Waterproofing and permeability
    • 7.1.3. Improved aesthetics and reduced maintenance
    • 7.1.4. Proliferation of touch panels
    • 7.1.5. Need for efficient moisture and oxygen protection in flexible and organic electronics
    • 7.1.6. Electronics packaging
    • 7.1.7. Growth in the optical and optoelectronic devices market
    • 7.1.8. Improved performance and cost over traditional AR coatings
    • 7.1.9. Growth in the solar energy market
  • 7.2. APPLICATIONS
    • 7.2.1. Waterproof nanocoatings
      • 7.2.1.1. Barrier films
      • 7.2.1.2. Hydrophobic coatings
    • 7.2.2. Anti-fingerprint nanocoatings
    • 7.2.3. Anti-reflection nanocoatings
  • 7.3. MARKET SIZE AND OPPORTUNITY
    • 7.3.1. Total market size
      • 7.3.1.1. Anti-fingerprint nanocoatings
      • 7.3.1.2. Anti-reflective nanocoatings
      • 7.3.1.3. Waterproof nanocoatings
  • 7.4. MARKET CHALLENGES
    • 7.4.1. Durability
    • 7.4.2. Dispersion
    • 7.4.3. Cost
  • 7.5. APPLICATION AND PRODUCT DEVELOPERS(22 company profiles)

8. REFERENCES

TABLES

  • Table 1: Semiconductor Components of IoT Devices
  • Table 2: Nanoelectronics in next generation information processing
  • Table 3: Nanoelectronics industrial collaborations and target markets
  • Table 4: Categorization of nanomaterials
  • Table 5: Nanomaterials in electronics
  • Table 6: Properties of CNTs and comparable materials
  • Table 7: Markets, benefits and applications of Carbon Nanotubes
  • Table 8: Properties of graphene
  • Table 9: Markets, benefits and applications of graphene
  • Table 10: Consumer products incorporating graphene
  • Table 11: Nanocellulose properties
  • Table 12: Properties and applications of nanocellulose
  • Table 13: Markets and applications of nanocellulose
  • Table 14: Markets, benefits and applications of nanosilver
  • Table 15: Markets, benefits and applications of nanowires
  • Table 16: Electronics markets and applications nanowires
  • Table 17: Markets, benefits and applications of quantum dots
  • Table 18: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1-4
  • Table 19: Properties of graphene quantum dots
  • Table 20: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2
  • Table 21: Comparison of ITO replacements
  • Table 22: Properties of SWNTs and graphene relevant to flexible electronics
  • Table 23: Comparative cost of TCF materials
  • Table 24: Wearable electronics devices and stage of development
  • Table 25: Applications in electronic textiles, by nanomaterials type and benefits thereof
  • Table 26: Graphene properties relevant to application in sensors
  • Table 27: Wearable medical device products and stage of development
  • Table 28: Applications in flexible and stretchable health monitors, by nanomaterials type and benefits thereof
  • Table 29: Applications in patch-type skin sensors, by nanomaterials type and benefits thereof
  • Table 30: Wearable energy and energy harvesting devices and stage of development
  • Table 31: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof
  • Table 32: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof
  • Table 33: Applications in energy harvesting textiles, by nanomaterials type and benefits thereof
  • Table 34: Advantages and disadvantages of LCDs, OLEDs and QDs
  • Table 35: Approaches for integrating QDs into displays
  • Table 36: Commercially available quantum dot display products
  • Table 37: Application markets, competing materials, nanomaterials advantages and current market size in flexible substrates
  • Table 38: Commercially available quantum dot display products
  • Table 39: Nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market-applications, stage of commercialization and estimated economic impact
  • Table 40: Global market for wearables, 2014-2021, units and US$
  • Table 41: Potential addressable market for smart textiles and wearables in medical and healthcare
  • Table 42: Potential addressable market for thin film, flexible and printed batteries
  • Table 43: Market assessment for the nanotechnology in the wearable energy storage (printed and flexible battery) market
  • Table 44: Market assessment for the nanotechnology in the wearable energy harvesting market
  • Table 45: Market challenges rating for nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market
  • Table 46: Comparative properties of conductive inks
  • Table 47: Applications in conductive inks by nanomaterials type and benefits thereof
  • Table 48: Opportunities for nanomaterials in printed electronics
  • Table 49: Nanotechnology and nanomaterials in the conductive inks market-applications, stage of commercialization and estimated economic impact
  • Table 50: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market
  • Table 51: Properties of nanocoatings
  • Table 52: Nanocoatings applied in the consumer electronics industry
  • Table 53: Anti-reflective nanocoatings-Markets and applications
  • Table 54: Market opportunity for anti-reflection nanocoatings
  • Table 55: Nanotechnology and nanomaterials in the electronics coatings market-applications, stage of commercialization and estimated economic impact
  • Table 56: Market challenges rating for nanotechnology and nanomaterials in the electronics coatings market

FIGURES

  • Figure 1: Demand for carbon nanotubes, by market
  • Figure 2: Technology Readiness Level (TRL) for Carbon Nanotubes
  • Figure 3: Graphene layer structure schematic
  • Figure 4: Demand for graphene, by market
  • Figure 5: Technology Readiness Level (TRL) for graphene
  • Figure 6: Hierarchical Structure of Wood Biomass
  • Figure 7: Types of nanocellulose
  • Figure 8: Electronics markets and applications of nanocellulose
  • Figure 9: Nanocellulose photoluminescent paper
  • Figure 10: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF
  • Figure 11: Demand for nanocellulose, by market
  • Figure 12: Technology Readiness Level (TRL) for nanocellulose
  • Figure 13: Supply chain for nanosilver products
  • Figure 14: Demand for nanosilver, by market
  • Figure 15: Demand for nanowires, by market
  • Figure 16: Technology Readiness Level (TRL) for nanowires
  • Figure 17: Quantum dot
  • Figure 18: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band
  • Figure 19: Demand for quantum dots, by market
  • Figure 20: Technology Readiness Level (TRL) for quantum dots
  • Figure 21: Black phosphorus structure
  • Figure 22: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal
  • Figure 23: Schematic of germanene
  • Figure 24: Graphdiyne structure
  • Figure 25: Schematic of Graphane crystal
  • Figure 26: Structure of hexagonal boron nitride
  • Figure 27: Structure of 2D molybdenum disulfide
  • Figure 28: Atomic force microscopy image of a representative MoS2 thin-film transistor
  • Figure 29: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
  • Figure 30: Schematic of a monolayer of rhenium disulphide
  • Figure 31: Silicene structure
  • Figure 32: Monolayer silicene on a silver (111) substrate
  • Figure 33: Silicene transistor
  • Figure 34: Crystal structure for stanene
  • Figure 35: Atomic structure model for the 2D stanene on Bi2Te3(111)
  • Figure 36: Schematic of tungsten diselenide
  • Figure 37: A large transparent conductive graphene film (about 20 X 20 cm2) manufactured by 2D Carbon Tech. Figure 24a (right): Prototype of a mobile phone produced by 2D Carbon Tech using a graphene touch panel
  • Figure 38: The Tesla S's touchscreen interface
  • Figure 39: Graphene-enabled bendable smartphone
  • Figure 40: 3D printed carbon nanotube sensor
  • Figure 41: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte
  • Figure 42: Flexible transistor sheet
  • Figure 43: Bending durability of Ag nanowires
  • Figure 44: NFC computer chip
  • Figure 45: NFC translucent diffuser schematic
  • Figure 46: Covestro wearables
  • Figure 47: Panasonic CTN stretchable Resin Film
  • Figure 48: Softceptor sensor
  • Figure 49: BeBop Media Arm Controller
  • Figure 50: LG Innotek flexible textile pressure sensor
  • Figure 51: <hitoegt; nanofiber conductive shirt original design(top) and current design (bottom)
  • Figure 52: Garment-based printable electrodes
  • Figure 53: Wearable gas sensor
  • Figure 54: Flexible, lightweight temperature sensor
  • Figure 55: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs
  • Figure 56: Graphene medical patch
  • Figure 57: StretchSense Energy Harvesting Kit
  • Figure 58: LG Chem Heaxagonal battery
  • Figure 59: Energy densities and specific energy of rechargeable batteries
  • Figure 60: Stretchable graphene supercapacitor
  • Figure 61: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper
  • Figure 62: Bosch automotive touchscreen with haptic feedback
  • Figure 63: Canatu's CNB™ touch sensor
  • Figure 64: Samsung QD-LCD TVs
  • Figure 65: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band
  • Figure 66: Methods for integrating QDs into LCD System. (a) On-chip (b) On-edge. (c) On-surface
  • Figure 67: On-edge configuration
  • Figure 68: QD-film integration into a standard LCD display
  • Figure 69: Quantum phosphor schematic in LED TV backlight
  • Figure 70: Global touch panel market ($ million), 2011-2018
  • Figure 71: Capacitive touch panel market forecast by layer structure (Ksqm)
  • Figure 72: Global transparent conductive film market forecast (million $)
  • Figure 73: Global transparent conductive film market forecast by materials type, 2015, %
  • Figure 74: Global transparent conductive film market forecast by materials type, 2020, %
  • Figure 75: QD-LCD supply chain
  • Figure 76: Total QD display component revenues 2013-2025 ($M), conservative and optimistic estimates
  • Figure 77: Global market revenues for smart wearable devices 2014-2021, in US$
  • Figure 78: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, conservative estimate
  • Figure 79: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, optimistic estimate
  • Figure 80: Potential addressable market for nanotech-enabled medical smart textiles and wearables
  • Figure 81: Demand for thin film, flexible and printed batteries 2015, by market
  • Figure 82: Demand for thin film, flexible and printed batteries 2025, by market
  • Figure 83: Potential addressable market for nanotech-enabled thin film, flexible or printed batteries
  • Figure 84: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates
  • Figure 85: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene
  • Figure 86: Global market for conductive inks and pastes in printed electronics
  • Figure 87: Phone coated in WaterBlock submerged in water tank
  • Figure 88: Demo solar panels coated with nanocoatings
  • Figure 89: Schematic of barrier nanoparticles deposited on flexible substrates
  • Figure 90: Schematic of anti-fingerprint nanocoatings
  • Figure 91: Toray anti-fingerprint film (left) and an existing lipophilic film (right)
  • Figure 92: Schematic of AR coating utilizing nanoporous coating
  • Figure 93: Schematic of KhepriCoat®. Image credit: DSM
  • Figure 94: Nanocoating submerged in water
Back to Top