Cover Image
市場調查報告書

全球奈米碳管市場

The Global Market for Carbon Nanotubes

出版商 Future Markets, Inc. 商品編碼 338652
出版日期 內容資訊 英文 573 Pages
訂單完成後即時交付
價格
Back to Top
全球奈米碳管市場 The Global Market for Carbon Nanotubes
出版日期: 2016年04月11日 內容資訊: 英文 573 Pages
簡介

本報告提供全球奈米碳管的市場調查,奈米碳管概要、特性、種類,競爭材料的比較,製造技術,相關法律、標準規格,製造數量與主要製造商,價格趨勢,各終端用戶產業/用途的成長推進因素,市場規模,市場機會分析,主要經營者簡介等詳細內容彙整。

第1章 調查手法

第2章 摘要整理

第3章 簡介

  • 奈米材料的特性
  • 類別化
  • 奈米碳管
    • MWNT
    • SWNT
    • DWNT
    • FWNT
    • CNH
    • 碳洋蔥
    • 富勒烯
    • BNNT
  • 特性
  • 奈米碳管的用途

第4章 石墨烯的比較分析

  • 特性比較
  • 成本、製造
  • 奈米碳管、石墨烯混合
  • 競爭分析

第5章 其他的2D材料

  • Phosphorene/黑磷
  • Silicene
  • 二硫化鉬 (MoS2)
  • 遊俠晶系氮化硼
  • Germanene
  • Graphdiyne
  • Graffin
  • Stanene/tinene
  • 二硒化鎢
  • ReS2、ReSe2
  • C2N
    • 特性
    • 用途
    • 開發相關新聞等

第6章 奈米碳管的合成

  • 電弧放電
  • CVD (化學氣相沉澱)
  • 等離子CVD
  • 高壓一氧化碳合成
    • HiPco
    • CoMoCAT
  • 燃燒合成
  • 雷射消熔
  • 白及溶液

第7章 奈米碳管市場結構

第8章 法律規章、標準規格

  • 標準規格
  • 環境、健康、安全性相關法規
    • 歐洲
    • 美國
    • 亞洲
  • 在職場的暴露

第9章 奈米碳管的專利

第10章 奈米碳管技術的應對力

第11章 奈米碳管的終端用戶市場

  • 製造數量的變化與預測
  • 主要製造商和生產能力
  • 各地區需求
    • 日本
    • 中國
  • 主要製造商
    • SWNT製造
      • OCSiAl
      • FGV Cambridge Nanosystems
      • Zeon Corporation
  • 價格:MWNT、SWNT、FWNT
  • 在主要用途的市場的普及機會

第12章 奈米碳管產業的近幾年的新聞

第13章 電子產品市場上的奈米碳管

  • 主要用途
  • 透明導電性薄膜&顯示器
  • 導電油墨
  • 電晶體、積體電路、其他
  • 記憶體設備
    • 市場促進因素、趨勢
    • 市場規模、市場機會
    • 特性、用途
    • 課題
    • 產品開發者

第14章 聚合物複合材料市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 課題
  • 產品開發者

第15章 航太市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 產品開發者

第16章 汽車市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 課題
  • 產品開發者

第17章 生物醫學、醫療保健市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 課題
  • 產品開發者

第18章 塗料市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 課題
  • 產品開發者

第19章 過濾、分離市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 課題
  • 產品開發者

第20章 能源儲存、轉換、探勘市場上的奈米碳管

  • 電池
  • 超級電容器儲能
  • PV
  • 燃料電池
  • 石油、天然氣
    • 市場促進因素、趨勢
    • 市場規模、市場機會
    • 特性、用途
    • 課題
    • 產品開發者

第21章 感測器市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 產品開發者

第22章 3D列印市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 課題
  • 產品開發者

第23章 黏劑市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 產品開發者

第24章 潤滑油市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 課題
  • 產品開發者

第25章 紡織品市場上的奈米碳管

  • 市場促進因素、趨勢
  • 市場規模、市場機會
  • 特性、用途
  • 產品開發者

第26章 製造商、開發者

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Carbon nanotubes (CNTs) have been attracted huge attention over the past two decades, based on their extraordinary physical and chemical properties that are a result of their intrinsic nano-sized one-dimensional nature.

Once the most promising of all nanomaterials, CNTs face stiff competition in conductive applications from graphene and other 2D materials and in mechanically enhanced composites from nanocellulose. However, after considerable research efforts, numerous multi-walled carbon nanotubes (MWNTs)-enhanced products are commercially available. Super-aligned CNT arrays, films and yarns have found applications in consumer electronics, batteries, polymer composites, aerospace, sensors, heaters, filters and biomedicine. Large-scale industrial production of single-walled carbon nanotubes (SWNTs) has been initiated, promising new market opportunities in transparent conductive films, transistors, sensors and memory devices. SWNTs are regarded as one of the most promising candidates to utilized as building blocks in next generation electronics.

WHAT DOES THE REPORT INCLUDE?

  • Comprehensive quantitative data and forecasts for the global carbon nanotubes market to 2025
  • Qualitative insight and perspective on the current market and future trends in end user markets
  • End user market analysis and technology timelines
  • Financial estimates for the markets carbon nanotubes will impact
  • Tables and figures illustrating carbon nanotubes market size
  • Full company profiles of carbon nanotubes producers and application developers including technology descriptions and end user markets targeted

Table of Contents

1. RESEARCH METHODOLOGY

2. EXECUTIVE SUMMARY

  • 2.1. Exceptional properties
  • 2.2. Products and applications
  • 2.3. Threat from the graphene market
  • 2.4. Production
    • 1.1.1. Multi-walled nanotube (MWNT) production
    • 1.1.2. Single-walled nanotube (SWNT) production
  • 2.5. Global demand for carbon nanotubes
    • 2.5.1. Current products
    • 1.1.3. Future products
  • 2.6. Market drivers and trends
    • 1.1.4. Electronics
      • 1.1.4.1. EMI/RFI shielding
      • 1.1.4.2. Transparent conductive film
      • 1.1.4.3. Silicon replacement
    • 1.1.5. Electric vehicles and lithium-ion batteries
  • 2.7. Market and production challenges
    • 1.1.6. Safety issues
    • 1.1.7. Dispersion
    • 1.1.8. Synthesis and supply quality
    • 1.1.9. Cost
    • 1.1.10. Competition from other materials
  • 2.8. Competitive analysis of carbon nanotubes and graphene

3. INTRODUCTION

  • 3.1. Properties of nanomaterials
  • 3.2. Categorization
  • 3.3. CARBON NANOTUBES
    • 1.1.11. Multi-walled nanotubes (MWNT)
    • 1.1.12. Single-wall carbon nanotubes (SWNT)
      • 1.1.12.1. Single-chirality
    • 1.1.13. Double-walled carbon nanotubes (DWNTs)
    • 1.1.14. Few-walled carbon nanotubes (FWNTs)
    • 1.1.15. Carbon Nanohorns (CNHs)
    • 1.1.16. Carbon Onions
    • 1.1.17. Fullerenes
    • 1.1.18. Boron Nitride nanotubes (BNNTs)
  • 3.4. Properties
  • 3.5. Applications of carbon nanotubes
    • 1.1.19. High volume applications
    • 1.1.20. Low volume applications
    • 1.1.21. Novel applications

4. COMPARATIVE ANALYSIS WITH GRAPHENE

  • 4.1. Comparative properties
  • 4.2. Cost and production
  • 4.3. Carbon nanotube-graphene hybrids
  • 4.4. Competitive market analysis of carbon nanotubes and graphene

5. OTHER 2D MATERIALS

  • 5.1. Phosphorene/Black phosphorus
    • 5.1.1. Properties
    • 5.1.2. Applications
      • 5.1.2.1. Electronics
      • 5.1.2.2. Thermoelectrics
      • 5.1.2.3. Batteries
      • 5.1.2.4. Photodetectors
    • 5.1.3. Recent research news
  • 5.2. Silicene
    • 5.2.1. Properties
    • 5.2.2. Applications
      • 5.2.2.1. Electronics
      • 5.2.2.2. Photovoltaics
      • 5.2.2.3. Thermoelectrics
      • 5.2.2.4. Batteries
      • 5.2.2.5. Sensors
    • 5.2.3. Recent research news
  • 5.3. Molybdenum disulfide (MoS2)
    • 5.3.1. Properties
    • 5.3.2. Applications
      • 5.3.2.1. Electronics
      • 5.3.2.2. Photovoltaics
      • 5.3.2.3. Piezoelectrics
      • 5.3.2.4. Sensors
      • 5.3.2.5. Filtration
    • 5.3.3. Recent research news
  • 5.4. Hexagonal boron nitride
    • 5.4.1.1. Properties
    • 5.4.2. Applications
      • 5.4.2.1. Electronics
      • 5.4.2.2. Capacitors and fuel cells
    • 5.4.3. Recent research news
  • 5.5. Germanene
    • 5.5.1. Properties
    • 5.5.2. Applications
      • 5.5.2.1. Electronics
    • 5.5.3. Recent research news
  • 5.6. Graphdiyne
    • 5.6.1. Properties
    • 5.6.2. Applications
      • 5.6.2.1. Batteries
      • 5.6.2.2. Separation membranes
      • 5.6.2.3. Photocatalysts
      • 5.6.2.4. Electronics
      • 5.6.2.5. Photovoltaics
  • 5.7. Graphane
    • 5.7.1. Properties
    • 5.7.2. Applications
      • 5.7.2.1. Electronics
      • 5.7.2.2. Hydrogen storage
  • 5.8. Stanene/tinene
    • 5.8.1. Properties
    • 5.8.2. Applications
      • 5.8.2.1. Electronics
    • 5.8.3. Recent research news
  • 5.9. Tungsten diselenide
    • 5.9.1. Properties
    • 5.9.2. Applications
      • 5.9.2.1. Electronics
    • 5.9.3. Recent research news
  • 5.10. Rhenium disulfide (ReS2) and diselenide (ReSe2
    • 5.10.1. Properties
    • 5.10.2. Applications
      • 5.10.2.1. Electronics
  • 5.11. C2N
    • 5.11.1. Properties
    • 5.11.2. Applications
      • 5.11.2.1. Electronics
      • 5.11.2.2. Filtration
      • 5.11.2.3. Photocatalysts

6. CARBON NANOTUBE SYNTHESIS

  • 6.1. Arc discharge synthesis
  • 6.2. Chemical Vapor Deposition (CVD)
  • 6.3. Plasma enhanced chemical vapor deposition (PECVD)
  • 6.4. High-pressure carbon monoxide synthesis
    • 6.4.1. High Pressure CO (HiPco)
    • 6.4.2. CoMoCAT
  • 6.5. Flame synthesis
  • 6.6. Laser ablation synthesis
  • 6.7. Silane solution method

7. CARBON NANOTUBES MARKET STRUCTURE

8. REGULATIONS AND STANDARDS

  • 8.1. Standards
  • 8.2. Environmental, health and safety regulation
    • 8.2.1. Europe
    • 8.2.2. United States
    • 8.2.3. Asia
  • 8.3. Workplace exposure

9. CARBON NANOTUBES PATENTS

10. CARBON NANOTUBES TECHNOLOGY READINESS LEVEL

11. CARBON NANOTUBES END USER MARKET SEGMENT ANALYSIS

  • 11.1. Production volumes 2010-2025
  • 11.2. Carbon nanotube producer production capacities
  • 11.3. Regional demand for carbon nanotubes
    • 11.3.1. Japan
    • 11.3.2. China
  • 11.4. Main carbon nanotubes producers
    • 11.4.1. SWNT production
      • 11.4.1.1. OCSiAl
      • 11.4.1.2. FGV Cambridge Nanosystems
      • 11.4.1.3. Zeon Corporation
  • 11.5. Price of carbon nanotubes-MWNTs, SWNTs and FWNTs
    • 11.5.1. SWNTs
    • 11.5.2. SWNTs
  • 11.6. Market penetration opportunity in key applications

12. CARBON NANOTUBES INDUSTRY NEWS 2013-2016

  • 12.1. JANUARY 2013
  • 12.2. AUGUST 2013
  • 12.3. NOVEMBER 2013
  • 12.4. DECEMBER 2013
  • 12.5. JANUARY 2014
  • 12.6. FEBRUARY 2014
  • 12.7. MARCH 2014
  • 12.8. APRIL 2014
  • 12.9. MAY 2014
  • 12.10. JULY 2014
  • 12.11. SEPTEMBER 2014
  • 12.12. JANUARY 2015
  • 12.13. FEBRUARY 2015
  • 12.14. MARCH 2015
  • 12.15. APRIL 2015
  • 12.16. MAY 2015
  • 12.17. JUNE 2015
  • 12.18. JULY 2015
  • 12.19. September 2015
  • 12.20. DECEMBER 2015

13. CARBON NANOTUBES IN THE ELECTRONICS MARKET

  • 13.1. MAIN APPLICATIONS
    • 13.1.1. TRANSPARENT CONDUCTIVE FILMS AND DISPLAYS
      • 13.1.1.1. MARKET DRIVERS AND TRENDS
  • 13.2. MARKET SIZE AND OPPORTUNITY
    • 13.2.1. ITO replacement materials in TCF
    • 13.2.2. Wearable electronics
  • 13.3. PROPERTIES AND APPLICATIONS
    • 13.3.1. SWNTs
    • 13.3.2. Double-walled carbon nanotubes
  • 13.4. CHALLENGES
    • 13.4.1. Fabricating SWNT devices
    • 13.4.2. Competing materials
  • 13.5. PRODUCT DEVELOPERS
  • 13.6. CONDUCTIVE INKS
    • 13.6.1. MARKET DRIVERS AND TRENDS
      • 13.6.1.1. Increased demand for printed electronics
      • 13.6.1.2. Limitations of existing conductive inks
      • 13.6.1.3. Growth in the 3D printing market
      • 13.6.1.4. Growth in the printed sensors market
  • 13.7. MARKET SIZE AND OPPORTUNITY
  • 13.8. PROPERTIES AND APPLICATIONS
  • 13.9. PRODUCT DEVELOPERS
  • 13.10. TRANSISTORS, INTEGRATED CIRCUITS AND otheR COMPONENTS
    • 13.10.1. MARKET DRIVERS AND TRENDS
      • 13.10.1.1. Scaling
      • 13.10.1.2. Limitations of current materials
      • 13.10.1.3. Limitations of copper as interconnect materials
      • 13.10.1.4. Need to improve bonding technology
      • 13.10.1.5. Need to improve thermal properties
  • 13.11. MARKET SIZE AND OPPORTUNITY
    • 13.11.1. PROPERTIES AND APPLICATIONS
      • 13.11.1.1. Thin film transistors (TFT)
      • 13.11.1.2. Electronics packaging
      • 13.11.1.3. Thermal management
      • 13.11.1.4. Insulation
  • 13.12. CHALLENGES
  • 13.13. PRODUCT DEVELOPERS
  • 13.14. MEMORY DEVICES
    • 13.14.1. MARKET DRIVERS AND TRENDS
      • 13.14.1.1. Technological and physical limitations
      • 13.14.1.2. Growth in the smartphone and tablet markets
      • 13.14.1.3. Growth in the flexible electronics market
  • 13.15. MARKET SIZE AND OPPORTUNITY
    • 13.15.1. PROPERTIES AND APPLICATIONS
  • 13.16. PRODUCT DEVELOPERS

14. CARBON NANOTUBES IN THE POLYMER COMPOSITES MARKET

  • 14.1. MARKET DRIVERS AND TRENDS
    • 14.1.1. Improved performance
    • 14.1.2. Multi-functionality
    • 14.1.3. Growth in wind energy market
  • 14.2. MARKET SIZE AND OPPORTUNITY
  • 14.3. PROPERTIES AND APPLICATIONS
    • 14.3.1. Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding
    • 14.3.2. Wind turbines
    • 14.3.3. Construction
    • 14.3.4. Sporting goods
    • 14.3.5. Ballistic protection
    • 14.3.6. Wire and cable
    • 14.3.7. Heat management
    • 14.3.8. Elastomers and rubber
  • 14.4. CHALLENGES
  • 14.5. PRODUCT DEVELOPERS

15. CARBON NANOTUBES IN THE AEROSPACE MARKET

  • 15.1. MARKET DRIVERS AND TRENDS
    • 15.1.1. Safety
    • 15.1.2. Reduced fuel consumption and costs
    • 15.1.3. Increased durability
    • 15.1.4. Multi-functionality
    • 15.1.5. Need for new de-icing solutions
    • 15.1.6. Weight reduction
    • 15.1.7. Need for improved lightning protection materials
  • 15.2. MARKET SIZE AND OPPORTUNITY
  • 15.3. PROPERTIES AND APPLICATIONS
    • 15.3.1. Composites
      • 15.3.1.1. ESD protection
      • 15.3.1.2. Conductive cables
      • 15.3.1.3. Anti-friction braking systems
    • 15.3.2. Coatings
      • 15.3.2.1. Anti-icing
    • 15.3.3. Sensors
  • 15.4. PRODUCT DEVELOPERS

16. CARBON NANOTUBES IN THE AUTOMOTIVE MARKET

  • 16.1. MARKET DRIVER AND TRENDS
    • 16.1.1. Environmental regulations
    • 16.1.2. Safety
    • 16.1.3. Lightweighting
    • 16.1.4. Cost
  • 16.2. MARKET SIZE AND OPPORTUNITY
  • 16.3. PROPERTIES AND APPLICATIONS
    • 16.3.1. Composites
    • 16.3.2. Vehicle mass reduction
    • 16.3.3. Lithium-ion batteries in electric and hybrid vehicles
    • 16.3.4. Coatings
      • 16.3.4.1. Thermally conductive
      • 16.3.4.2. Flame retardant
  • 16.4. CHALLENGES
  • 16.5. PRODUCT DEVELOPERS

17. CARBON NANOTUBES IN THE BIOMEDICAL & HEALTHCARE MARKETS

  • 17.1. MARKET DRIVERS AND TRENDS
    • 17.1.1. Improved drug delivery for cancer therapy
    • 17.1.2. Shortcomings of chemotherapies
    • 17.1.3. Biocompatibility of medical implants
  • 17.2. MARKET SIZE AND OPPORTUNITY
  • 17.3. PROPERTIES AND APPLICATIONS
    • 17.3.1. Cancer therapy
      • 17.3.1.1. Drug delivery
      • 17.3.1.2. Immunotherapy
      • 17.3.1.3. Thermal ablation
      • 17.3.1.4. Stem cell therapy
    • 17.3.2. Medical implants
    • 17.3.3. Biosensors
    • 17.3.4. Medical imaging
    • 17.3.5. Tissue engineering
  • 17.4. CHALLENGES
    • 17.4.1. Potential toxicity
    • 17.4.2. Safety
    • 17.4.3. Dispersion
  • 17.5. PRODUCT DEVELOPERS

18. CARBON NANOTUBES IN THE COATINGS MARKET

  • 18.1. MARKET DRIVERS AND TRENDS
    • 18.1.1. Sustainability and regulation
    • 18.1.2. Cost of corrosion
    • 18.1.3. Improved hygiene
    • 18.1.4. Cost of weather-related damage
  • 18.2. MARKET SIZE AND OPPORTUNITY
  • 18.3. PROPERTIES AND APPLICATIONS
    • 18.3.1. Anti-static coatings
    • 18.3.2. Anti-corrosion coatings
      • 18.3.2.1. Oil and gas
      • 18.3.2.2. Marine
    • 18.3.3. Anti-microbial
    • 18.3.4. Anti-icing
    • 18.3.5. Heat protection
    • 18.3.6. Anti-fouling
    • 18.3.7. Wearand abrasion resistance
  • 18.4. PRODUCT DEVELOPERS

19. CARBON NANOTUBES IN THE FILTRATION AND SEPARATION MARKET

  • 19.1. MARKET DRIVERS AND TRENDS
    • 19.1.1. Need for improved membrane technology
    • 19.1.2. Water shortage and population growth
    • 19.1.3. Contamination
    • 19.1.4. Cost
  • 19.2. MARKET SIZE AND OPPORTUNITY
  • 19.3. PROPERTIES AND APPLICATIONS
  • 19.4. CHALLENGES
    • 19.4.1. Uniform pore size and distribution
    • 19.4.2. Reducing pore size for improved desalination
    • 19.4.3. Difficulties of CNT growth
    • 19.4.4. Cost
  • 19.5. PRODUCT DEVELOPERS

20. CARBON NANOTUBES IN THE ENERGY STORAGE, CONVERSION AND EXPLORATION MARKETS

  • 20.1. BATTERIES
    • 20.1.1. MARKET DRIVERS AND TRENDS
    • 20.1.2. Growth in electric vehicles market
    • 20.1.3. Continued growth in cellular phones market
    • 20.1.4. Reduce dependence on lithium
    • 20.1.5. Shortcomings of existing battery and supercapacitor technology
    • 20.1.6. Reduced costs for widespread application
    • 20.1.7. Power sources for flexible electronics
  • 20.2. MARKET SIZE AND OPPORTUNITY
  • 20.3. PROPERTIES AND APPLICATIONS
    • 20.3.1. CNT Anodes
    • 20.3.2. CNT Cathodes
  • 20.4. CHALLENGES
  • 20.5. SUPERCAPACITORS
    • 20.5.1. MARKET DRIVERS AND TRENDS
      • 20.5.1.1. Reducing costs
      • 20.5.1.2. Demand from portable electronics
      • 20.5.1.3. Inefficiencies of standard battery technology
      • 20.5.1.4. Problems with activated carbon
  • 20.6. MARKET SIZE AND OPPORTUNITY
  • 20.7. PROPERTIES AND APPLICATIONS
    • 20.7.1. Graphene/CNT hybrids
  • 20.8. PHOTOVOLTAICS
    • 20.8.1. MARKET DRIVERS AND TRENDS
      • 20.8.1.1. Need to improve solar cell efficiency
      • 20.8.1.2. Reduce costs
      • 20.8.1.3. Varying environmental conditions
  • 20.9. MARKET SIZE AND OPPORTUNITY
  • 20.10. PROPERTIES AND APPLICATIONS
    • 20.10.1. Organic-inorganic perovskite solar cells
  • 20.11. FUEL CELLS
    • 20.11.1. MARKET DRIVERS
      • 20.11.1.1. Limitations of platinum
      • 20.11.1.2. Cost
  • 20.12. MARKET SIZE AND OPPORTUNITY
  • 20.13. PROPERTIES AND APPLICATIONS
    • 20.13.1. Electrocatalyst supports
  • 20.14. OIL AND GAS
    • 20.14.1. MARKET DRIVERS AND TRENDS
      • 20.14.1.1. Cost
      • 20.14.1.2. Increased demands of drilling environments
      • 20.14.1.3. Environmental and regulatory
  • 20.15. MARKET SIZE AND OPPORTUNITY
  • 20.16. PROPERTIES AND APPLICATIONS
  • 20.17. PRODUCT DEVELOPERS

21. CARBON NANOTUBES IN THE SENSORS MARKET

  • 21.1. MARKET DRIVERS AND TRENDS
    • 21.1.1. Increased power and performance with reduced cost
    • 21.1.2. Enhanced sensitivity
    • 21.1.3. Replacing silver electrodes
    • 21.1.4. Growth in the home diagnostics and point of care market
    • 21.1.5. Improved thermal stability
    • 21.1.6. Environmental conditions
  • 21.2. MARKET SIZE AND OPPORTUNITY
  • 21.3. PROPERTIES AND APPLICATIONS
    • 21.3.1. Electrochemical and gas sensors
    • 21.3.2. Pressure sensors
    • 21.3.3. Biosensors
  • 21.4. PRODUCT DEVELOPERS

22. CARBON NANOTUBES IN THE 3D PRINTING MARKET

  • 22.1.1. MARKET DRIVERS AND TRENDS
    • 22.1.1.1. Improved materials at lower cost
  • 22.2. MARKET SIZE AND OPPORTUNITY
  • 22.3. PROPERTIES AND APPLICATIONS
  • 22.4. CHALLENGES
  • 22.5. PRODUCT DEVELOPERS

23. CARBON NANOTUBES IN THE ADHESIVES MARKET

  • 23.1. MARKET DRIVERS AND TRENDS
    • 23.1.1. Thermal management in electronics
    • 23.1.2. Environmental sustainability
  • 23.2. PROPERTIES AND APPLICATIONS
  • 23.3. MARKET SIZE AND OPPORTUNITY
  • 23.4. PRODUCT DEVELOPERS

24. CARBON NANOTUBES IN THE LUBRICANTS MARKET

  • 24.1. MARKET DRIVERS AND TRENDS
    • 24.1.1. Cost effective alternatives
    • 24.1.2. Need for higher-performing lubricants for fuel efficiency
    • 24.1.3. Environmental concerns
  • 24.2. PROPERTIES AND APPLICATIONS
  • 24.3. MARKET SIZE AND OPPORTUNITY
  • 24.4. CHALLENGES
  • 24.5. PRODUCT DEVELOPERS

25. CARBON NANOTUBES IN THE TEXTILES MARKET

  • 25.1. MARKET DRIVERS AND TRENDS
    • 25.1.1. Growth in the wearable electronics market
  • 25.2. PROPERTIES AND APPLICATONS
    • 25.2.1. Wearable electronics
    • 25.2.2. Superhydrophobic coatings
    • 25.2.3. Conductive coatings
    • 25.2.4. Flame retardant textiles
  • 25.3. MARKET SIZE AND OPPORTUNITY
  • 25.4. PRODUCT DEVELOPERS

26. CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS(184 company profiles)

TABLES

  • Table 1: Properties of CNTs and comparable materials
  • Table 2: Carbon nanotubes target markets-Applications, stage of commercialization and potential addressable market size
  • Table 3: Annual production capacity of MWNT and SWNT producers
  • Table 4: SWNT producers production capacities 2015
  • Table 5: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014
  • Table 6: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2025
  • Table 7: Categorization of nanomaterials
  • Table 8: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes
  • Table 9: Properties of carbon nanotubes
  • Table 10: Comparative properties of carbon materials
  • Table 11: Comparative properties of graphene with nanoclays and carbon nanotubes
  • Table 12: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2025
  • Table 13: Electronic and mechanical properties of monolyaer phosphorene, graphene and MoS2
  • Table 14: Recent phosphorene research news
  • Table 15: Recent silicene research news
  • Table 16: Recent Molybdenum disulfide research news
  • Table 17: Recent hexagonal boron nitride research news
  • Table 18: Recent germanane research news
  • Table 19: Recent stanene/tinene research news
  • Table 20: Recent tungsten diselenide research news
  • Table 21: SWNT synthesis methods
  • Table 22: Carbon nanotubes market structure
  • Table 23: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014
  • Table 24: Annual production capacity of main carbon nanotubes producers
  • Table 25: Example carbon nanotubes prices
  • Table 26: Market penetration and volume estimates (tons) for carbon nanotubes in key applications
  • Table 27: Carbon nanotubes in the electronics and photonics market-applications, stage of commercialization and addressable market size
  • Table 28: Comparative analysis of ITO replacement materials
  • Table 29: Overview of Metal-based TCFs
  • Table 30: Application markets, competing materials, nanomaterials advantages and current market size in flexible substrates
  • Table 31: Carbon nanotubes product and application developers in transparent conductive films and displays
  • Table 32: Comparative properties of conductive inks
  • Table 33: Opportunities for nanomaterials in printed electronics
  • Table 34: Carbon nanotubes product and application developers in conductive inks
  • Table 35: Comparison of Cu, CNTs and graphene as interconnect materials
  • Table 36: Carbon nanotubes product and application developers in integrated circuits
  • Table 37: Carbon nanotubes product and application developers in memory devices
  • Table 38: Carbon nanotubes in the polymer composites market-applications, stage of commercialization and addressable market size
  • Table 39: Addressable market size for carbon nanotubes composites
  • Table 40: Carbon nanotubes product and application developers in the composites industry
  • Table 41: Carbon nanotubes in the aerospace market-applications, stage of commercialization and addressable market size
  • Table 42: Carbon nanotubes product and application developers in the aerospace industry
  • Table 43: Carbon nanotubes in the automotive market-applications, stage of commercialization and addressable market size
  • Table 44: Application markets, competing materials, and current market size in the automotive sector
  • Table 45: Carbon nanotubes product and application developers in the automotive industry
  • Table 46: Carbon nanotubes in the biomedical and healthcare markets-applications, stage of commercialization and addressable market size
  • Table 47: CNTs in life sciences and biomedicine
  • Table 48: Carbon nanotubes product and application developers in the medical and healthcare industry
  • Table 49: Carbon nanotubes in the coatings market-applications, stage of commercialization and addressable market size
  • Table 50: Carbon nanotubes product and application developers in the coatings industry
  • Table 51: Types of filtration
  • Table 52: Application markets, competing materials and current market size in filtration
  • Table 53: Comparison of CNT membranes with other membrane technologies
  • Table 54: Carbon nanotubes product and application developers in the filtration industry
  • Table 55: Carbon nanotubes in the energy market-Applications, stage of commercialization and addressable market size
  • Table 56: Properties of carbon materials in high-performance supercapacitors
  • Table 57: Carbon nanotubes product and application developers in the energy industry
  • Table 58: Carbon nanotubes in the sensors market-applications, stage of commercialization and addressable market size
  • Table 59: First generation point of care diagnostics
  • Table 60: Carbon nanotubes product and application developers in the sensors industry
  • Table 61: Carbon nanotubes product and application developers in the 3D printing industry
  • Table 62: Carbon nanotubes product and application developers in the adhesives industry
  • Table 63: Applications of carbon nanotubes in lubricants
  • Table 64: Carbon nanotubes product and application developers in the lubricants industry
  • Table 65: Desirable functional properties for the textiles industry afforded by the use of nanomaterials
  • Table 66: Carbon nanotubes product and application developers in the textiles industry

FIGURES

  • Figure 1: Molecular structures of SWNT and MWNT
  • Figure 2: Production capacities for SWNTs in kilograms, 2005-2014
  • Figure 3: Schematic of single-walled carbon nanotube
  • Figure 4: Double-walled carbon nanotube bundle cross-section micrograph and model
  • Figure 5: Schematic representation of carbon nanohorns
  • Figure 6: TEM image of carbon onion
  • Figure 7: Fullerene schematic
  • Figure 8: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red
  • Figure 9: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite
  • Figure 10: Phosphorene structure
  • Figure 11: Silicene structure
  • Figure 12: Monolayer silicene on a silver (111) substrate
  • Figure 13: Silicene transistor
  • Figure 14: Structure of 2D molybdenum disulfide
  • Figure 15: Atomic force microscopy image of a representative MoS2 thin-film transistor
  • Figure 16: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
  • Figure 17: Structure of hexagonal boron nitride
  • Figure 18: Schematic of germanene
  • Figure 19: Graphdiyne structure
  • Figure 20: Schematic of Graphane crystal
  • Figure 21: Crystal structure for stanene
  • Figure 22: Atomic structure model for the 2D stanene on Bi2Te3(111)
  • Figure 23: Schematic of tungsten diselenide
  • Figure 24: Schematic of a monolayer of rhenium disulphide
  • Figure 25: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal
  • Figure 26: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames
  • Figure 27: Arc discharge process for CNTs
  • Figure 28: Schematic of thermal-CVD method
  • Figure 29: Schematic of plasma-CVD method
  • Figure 30: CoMoCAT® process
  • Figure 31: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame
  • Figure 32: Schematic of laser ablation synthesis
  • Figure 33: CNT patents filed 2000-2014
  • Figure 34: Patent distribution of CNT application areas to 2014
  • Figure 35: Technology Readiness Level (TRL) for Carbon Nanotubes
  • Figure 36: Regional demand for CNTs utilized in batteries
  • Figure 37: Regional demand for CNTs utilized in Polymer reinforcement
  • Figure 38: Flexible organic light emitting diode (OLED) using graphene electrode
  • Figure 39: A large transparent conductive graphene film (about 20 X 20 cm2) manufactured by 2D Carbon Tech. Figure 24a (right): Prototype of a mobile phone produced by 2D Carbon Tech using a graphene touch panel
  • Figure 40: Global touch panel market ($ million), 2011-2018
  • Figure 41: Capacitive touch panel market forecast by layer structure (Ksqm)
  • Figure 42: Global transparent conductive film market forecast (million $)
  • Figure 43: Global transparent conductive film market forecast by materials type, 2012-2020, millions $
  • Figure 44: Global transparent conductive film market forecast by materials type, 2015, %
  • Figure 45: Global transparent conductive film market forecast by materials type, 2020, %
  • Figure 46: Global market for smart sports clothing (Millions US$)
  • Figure 47: Global market for smart wearables (Millions US$)
  • Figure 48: Global market for conductive inks and pastes in printed electronics
  • Figure 49: Nanotube inks
  • Figure 50: Transistor architecture trend chart
  • Figure 51: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)
  • Figure 52: CMOS Technology Roadmap
  • Figure 53: Emerging logic devices
  • Figure 54: Figure 38: Thin film transistor incorporating CNTs
  • Figure 55: Stretchable CNT memory and logic devices for wearable electronics
  • Figure 56: Graphene oxide-based RRAm device on a flexible substrate
  • Figure 57: Emerging memory devices
  • Figure 58: Carbon nanotubes NRAM chip
  • Figure 59: Schematic of NRAM cell
  • Figure 60: Global Paints and Coatings Market, share by end user market
  • Figure 61: Nano Lithium X Battery
  • Figure 62: Suntech/TCNT nanotube frame module
  • Figure 63: 3D Printed tweezers incorporating Carbon Nanotube Filament
Back to Top