Cover Image
市場調查報告書

底盤與車體運動性:轉換·技術·市場機會

Chassis & dynamics: transformation, technology and opportunity

出版商 Autelligence 商品編碼 352532
出版日期 內容資訊 英文 141 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
底盤與車體運動性:轉換·技術·市場機會 Chassis & dynamics: transformation, technology and opportunity
出版日期: 2015年09月01日 內容資訊: 英文 141 Pages
簡介

無關乎景氣好壞,汽車產業仍熱情致力於「X-by-wire」 (線傳煞車,線傳感應轉向,線傳駕駛) 的開發·改良。因為該技術一旦實現,便關係到車輛的輕量化、強化安全性、提升燃油效率。在產業方面,雖然過去20年都投入於汽車的電控,但受到新興國家市場崛起和無人駕駛汽車的登場等影響,近二年狀況產生了劇烈的改變。今後朝平台通用化發展,並以車輛的運動性控制方法作為主要差別化因素,一般認為這將會為零件、系統的各家供應商帶來莫大的市場機會。

本報告提供汽車的運動性相關技術的現況與未來展望相關分析,提供您迄今的技術進步成果,還有技術設計·檢驗的方法,各組件·技術概論和迄今的技術開發成果,市場趨勢的實際成果值·預測值,今後的技術進步預測,主要企業簡介等調查、考察。

第1章 簡介

第2章 車輛運動性的演進

  • 防打滑設備 (ESC) 相關的法規:車輛運動性的基本原則
  • 電子產品相關軟體的演進
  • 車輛運動性技術的成本效益標準評估,與消費者的適用度
  • 分析結果

第3章 透過電腦的車輛系統建模·模擬

  • 安全性的監測
  • 致動器/懸吊系統/轉向器/輪胎的設計的預備試驗的建模的規格
    • 致動器
    • 懸吊系統
    • 電動方向盤
    • 輪胎

第4章 車輛運動性系統的整合

  • 感測器的支援
  • 案例研究:整合系統

第5章 零件的設計和規格:轉向器·懸吊系統·剎車·牽引控制·輪胎

  • 轉向器
    • 電力油壓式動力方向盤
    • 電動方向盤
    • 主動轉向系統
    • 線傳感應轉向
    • 後輪轉向器
  • 懸吊系統
    • 懸吊系統的配置:前輪·後輪
    • 運動學 (運動學)/elasto-kinematics(彈性運動學)
    • 減重
    • 從被動式懸吊系統演變為主動式懸吊系統的
    • 被動式懸吊的開發
    • 適應式懸吊系統·系統
    • 半主動式·懸吊系統·系統
    • 主動式懸吊·系統:油壓式,氣壓式,電磁式
  • 剎車
    • 緊急煞車輔助
    • 自動緊急剎車
    • 線傳煞車
    • 電子機械式剎車
    • 混合動力汽車·電動車 (EV) 轉動煞車系統
    • 電動式停車剎車
    • 輕量化材料
  • 穩定控制
  • 牽引控制
    • 差速器
    • 全輪驅動
    • 電動式牽引控制
    • 扭矩向量化(vectoring)
    • 主動式全輪驅動/扭矩向量化(vectoring)
    • 電動式全輪驅動/扭矩向量化(vectoring)系統
  • 輪胎

第6章 市場趨勢與其預測

  • 轉向器
  • 懸吊系統
  • 剎車
  • 穩定控制系統
  • 全輪驅動
  • 輪胎

第7章 針對未來的開發藍圖

第8章 企業簡介

  • Advics
  • American Axle
  • BorgWarner
  • Bosch
  • BWI Group
  • Chassis Brakes
  • Continental AG
  • Delphi
  • Denso
  • Freescale
  • JTEKT
  • KYB
  • Magna
  • Magneti Marelli
  • Mando Corporation
  • Nexteer
  • 日本發條
  • 日本精工
  • Ricardo
  • Tenneco
  • Thyssenkrupp
  • Visteon
  • ZF Friedrichshafen AG

圖表一覽

目錄

Nothing, not even the Toyota unintended acceleration crisis of a few years ago, has tempered the industry's zeal for brake-by-wire, steer-by-wire and drive-by-wire technology.

X-by-wire is the wave of the future in vehicle dynamics, promising to make cars lighter, safer, easier to build and more fuel efficient.

But what does it mean for your company? What are the hidden opportunities?

“Chassis & Dynamics: Transformation, Technology and Opportunity” provides an overall understanding of a fast-moving field.

For more than two decades the take-up of electronically-controlled vehicle dynamics was held back by consumer reservations. But the situation has changed dramatically in the past two years.

OEM strategies - starting with braking systems - are taking shape so quickly that it is difficult to keep track of who is doing what - and where the opportunities lie. The report offers a clear analysis of the state of modern vehicle dynamics and the tactical steps OEMs are taking.

What's clear is that the mandate for better fuel economy and the competition for emerging markets are stimulating the new interest by OEMs in X-by-wire systems. Not least among them is the new industry race for self-driving vehicles, which proponents say is impossible without X-by-wire.

In an era of platform commonality the management of vehicle dynamics has become a key differentiator for products - a trend that will clearly continue. The passage of the art of vehicle dynamics from the mechanical to the electronic creates enormous opportunities for suppliers.

The report evaluates cost benefit imperatives of vehicle dynamics technologies and consumer adoption, as well as detailing important research findings and exploring case studies in integrated systems.

SAMPLE

Figure 75:
Global automotive steering system market growth, 2013-2018

                     Source: Markets & Markets (Forecast workbook)

Table of Contents

Chapter 1: Introduction

Chapter 2: The evolution of vehicle dynamics

  • 2.1. Rules governing ESC - the founding principle of vehicle dynamics
  • 2.2. Software progression in electronics
  • 2.3. Evaluating cost benefit imperatives of vehicle dynamics technologies and consumer adoption
  • 2.4. Research findings

Chapter 3: Computer modelling and simulation of in vehicle systems

  • 3.1. Monitoring safety
  • 3.2. Uses of modelling to pretest designs in actuators, suspension, steering and tyres
    • 3.2.1. Actuators
    • 3.2.2. Suspension
    • 3.2.3. Electric power steering
    • 3.2.4. Tyres

Chapter 4: Integration of vehicle dynamics systems

  • 4.1. Assistance from sensors
  • 4.2. Case studies in integrated systems

Chapter 5: Design and specification of components - steering, suspension, brakes, traction control and tyres

  • 5.1. Steering
    • 5.1.1. Electro-hydraulic power steering
    • 5.1.2. Electric power steering
    • 5.1.3. Active steering
    • 5.1.4. Steer-by-wire
    • 5.1.5. Rear wheel steering
  • 5.2. Suspension
    • 5.2.1. Suspension geometry - front and rear
    • 5.2.2. Kinematics and elasto-kinematics
    • 5.2.3. Reducing weight
    • 5.2.4. The progression from passive to active suspension
    • 5.2.5. Passive suspension developments
    • 5.2.6. Adaptive suspension systems
    • 5.2.7. Semi-active suspension systems
    • 5.2.8. Active suspension systems - hydraulic, air and electromagnetic
  • 5.3. Brakes
    • 5.3.1. Emergency brake assist
    • 5.3.2. Automatic emergency braking
    • 5.3.3. Brake-by-wire
    • 5.3.4. Electromechanical brakes
    • 5.3.5. Brake systems for hybrids and EVs
    • 5.3.6. Electric parking brake
    • 5.3.7. Lightweight materials
  • 5.4. Stability control
  • 5.5. Traction control
    • 5.5.1. Differentials
    • 5.5.2. All-wheel drive
    • 5.5.3. Electronic traction control
    • 5.5.4. Torque vectoring
    • 5.5.5. Active all-wheel drive and torque vectoring
    • 5.5.6. Electrified all-wheel drive and torque vectoring systems
  • 5.6. Tyres

Chapter 6: Market dynamics and forecasts

  • 6.1. Steering
  • 6.2. Suspension
  • 6.3. Brakes
  • 6.4. Stability control systems
  • 6.5. All-wheel drive
  • 6.6. Tyres

Chapter 7: Roadmap for future developments

Chapter 8: Company Profiles

  • Advics
  • American Axle
  • BorgWarner
  • Bosch
  • BWI Group
  • Chassis Brakes
  • Continental AG
  • Delphi
  • Denso International
  • Freescale
  • JTEKT
  • KYB Corporation
  • Magna
  • Magneti Marelli
  • Mando Corporation
  • Nexteer
  • NHK Spring
  • NSK
  • Ricardo
  • Tenneco
  • Thyssenkrupp
  • Visteon
  • ZF Friedrichshafen AG

Table of figures

  • Figure 1: Increasing number of ECUs per vehicle class, 2006-2018
  • Figure 2: The increasing number of vehicle model variants, 1970 to 2030
  • Figure 3: Step response of actuator models compared to actual measurement
  • Figure 4: Model descriptions for modelling elasto-kinematics in a double wishbone suspension
  • Figure 5: Influence of elastic component under longitudinal load
  • Figure 6: Influence of elastic component under lateral load
  • Figure 7: Steering system solutions for a range of model variants
  • Figure 8: Finite element, 3D tyre simulation with thermal gradient
  • Figure 9: Bosch Vehicle Motion Control
  • Figure 10: Bosch networked ESC and steering systems
  • Figure 11: ZF TRW electrically-powered hydraulic steering
  • Figure 12: Different EPS calibration possibilities, steering wheel torque vs assistance
  • Figure 13: Steering feedback maps - Porsche UKR vs conventional EPS
  • Figure 14: Honda EPS system
  • Figure 15: ZF Lenksysteme Active Steering
  • Figure 16: TRW Belt Drive Electrically-Powered Steering
  • Figure 17: Nexteer Pinion Assist Electric Power Steering
  • Figure 18: Bosch Servolectric EPS with servo unit on the steering column
  • Figure 19: Ford Adaptive Steering components
  • Figure 20: ThyssenKrupp Presta experimental steer-by-wire system
  • Figure 21: ZF Active Kinematics Control system
  • Figure 22: Transient lateral load build-up in rear suspension trailing arm, base vs modified
  • Figure 23: Driver ratings and preferences for five roll dynamics test cases
  • Figure 24: Typical front-wheel drive MacPherson strut suspension configuration
  • Figure 25: Double-wishbone front suspension configuration
  • Figure 26: Toyota robotic suspension schematic
  • Figure 27: Comparison of normal, wide and controlled suspension during cornering
  • Figure 28: Ford Fiesta twist beam rear suspension
  • Figure 29: Mercedes-Benz CLA multi-link rear suspension
  • Figure 30: ZF ultra-light suspension strut
  • Figure 31: Sogefi glass fibre-reinforced polymer coil spring
  • Figure 32: Mercedes-Benz pre-scan technology
  • Figure 33: Ford RevoKnuckle
  • Figure 34: HyPerStrut (left) versus MacPherson strut (right) geometry
  • Figure 35: Chevrolet Cruze Z-LinkTorsion Beam rear suspension
  • Figure 36: Ford Control Blade rear suspension
  • Figure 37: ZF Vario Damper internals
  • Figure 38: BWI MagneRide strut and damper
  • Figure 39: Magneti Marelli Synaptic Damping components
  • Figure 40: Tenneco Continuously-controlled Electronic Suspension
  • Figure 41: ZF Sachs CDC dampers
  • Figure 42: Mercedes-Benz Active Body Control in action
  • Figure 43: Bilstein B4 Air Suspension Strut
  • Figure 44: Continental Airmatic Suspension
  • Figure 45: Bose electromagnetic front suspension module
  • Figure 46: Braking distances with and without EBS
  • Figure 47: Continental MK C1 electro-hydraulic brake system
  • Figure 48: ZF TRW Slip Control Boost
  • Figure 49: Siemens VDO Electronic Wedge Brake
  • Figure 50: Continental spindle-actuated electromechanical brake
  • Figure 51: Bosch iBooster
  • Figure 52: Continental drum-brake EPB system
  • Figure 53: ZF TRW EPB and operating switch
  • Figure 54: Brembo carbon-ceramic brake module
  • Figure 55: Continental/Schaeffler Active Roll Stabilization
  • Figure 56: ZF Sachs ARS locking-unlocking device
  • Figure 57: GKN Electronic Locking Differential
  • Figure 58: GKN Electronic Torque Manager
  • Figure 59: GKN Dual Differential for transverse powertrain
  • Figure 60: BorgWarner FXD
  • Figure 61: GKN Electronic Torque Vectoring Module
  • Figure 62: Lexus RC F torque transfer system
  • Figure 63: Steering angle, yaw rate, brake pressures, engine torque and wheel slip under control strategy intervention
  • Figure 64: AWD demand on high-grip roads
  • Figure 65: Fuel economy: Getrag ECO -Twinster versus mechanical AWD
  • Figure 66: BorgWarner Torque-On-Demand Transfer Case
  • Figure 67: GKN ElectroMagnetic Control Device
  • Figure 68: Honda SH-AWD system
  • Figure 69: Magna ProActive AWD coupling
  • Figure 70: Schaeffler transverse, two-speed electric drive axle
  • Figure 71: Schaeffler 48-volt electric drive axle with torque vectoring
  • Figure 72: Michelin Active Wheel
  • Figure 73: Braking distance tests on high- and low-friction surfaces, 2000-2016
  • Figure 74: Rolling resistance, 2000-2014
  • Figure 75: Global automotive steering system market growth, 2013-2018
  • Figure 76: Global electric power steering market value by region (US$bn), 2014-2020
  • Figure 77: Electric power steering system shipments (millions), 2013-2018
  • Figure 78: Automotive suspension systems market value by region, 2013-2018
  • Figure 79: Global brake systems market value growth by vehicle type, 2014-2019
  • Figure 80: Automotive brake friction products market volume growth by region, 2014-2019
  • Figure 81: Global automotive ABS and ESC system market growth, 2014-2019
  • Figure 82: Automotive multi-wheel drive systems market volume by region, 2014-2020
  • Figure 83: Global tyre revenue 2014 by manufacturer
  • Figure 84: Global tyre value by vehicle sector
  • Figure 85: Bosch roadmap towards automated driving
  • Figure 86: Bosch Vehicle Motion Control inputs and outputs roadmap

Table of tables

  • Table 1: Safety incentives - dates and stages of fitment required by legislation
  • Table 2: Comparison of evasive distance for different velocities
  • Table 3: A new brand of steering - Ford's Steering System Fingerprint
  • Table 4: Mergers and acquisitions driven by successful technologies
Back to Top