Cover Image
市場調查報告書

48V的課題及預測:48V電源系統的現在、近的未來發展

48V Issues and Prospects: Unlocking the Opportunities-Current and near-future developments in 48V Power Supply Systems

出版商 Autelligence 商品編碼 322274
出版日期 內容資訊 英文 111 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
48V的課題及預測:48V電源系統的現在、近的未來發展 48V Issues and Prospects: Unlocking the Opportunities-Current and near-future developments in 48V Power Supply Systems
出版日期: 2017年08月31日 內容資訊: 英文 111 Pages
簡介

本報告提供汽車用OEM/現有供應商/新加入企業48V電源系統的開發相關調查分析,機會與課題,新的系統和應用為焦點之系統性資訊。

第1章 簡介

第2章 48V相關汽車產業的評估

  • 48V的未來
  • 見解的變化,比較,調查結果
  • 有關不確定性的重要的提問

第3章 全球市場的推動要素、阻礙因素概要

  • EV的獎勵
  • 對48V銷售貢獻的趨勢變化
  • 全球不確定性翻轉大多數的見解
  • 結果變成降低成分的問題
  • 摘要

第4章 柔軟的基本組件策略合身

  • 全部救助地球
  • 小型引擎
  • 嘶嘶聲大牛排小
  • 舒適功能48V標準裝備
  • 自動化車輛
  • 摘要

第5章 OEM的本意

  • Mercedes-Benz
  • Renault
  • OEM的成員48V的新型模式
  • 摘要

第6章 計劃比較48V的選擇

  • 柴油:ADEPT計劃
  • Schaeffler的高性能48V概念 (AWD)
  • 摘要

第7章 48V:主要技術

  • 48V的心臟部位:電池
  • 帶給電力電子技術革命的材料和設計
  • 48V的旋轉機器技術的未來
  • 回到使用12V MHEV的未來
  • 摘要

第8章 強力EV的48V:Volabo的概念

  • 生成180kW的48V馬達
  • 處理大電流的獨有控制
  • 智能電池結構電力供給
  • 如何處理供電電纜
  • Post MHEV
  • 摘要

附錄

資訊來源

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

48V - a key automotive technology of the 2020s

48V is clearly going to be a very important technology in the coming decade. Some senior OEM executives say it should be one of those fundamental technologies that should be adopted by all ICE vehicles in the future.

Key benefits for 48V are that it is is a system that augments combustion engines to reduce fuel consumption, reduces particulate emissions in diesels and improves the driver experience by increasing the responsiveness of the vehicle.

48V systems can help OEMs deliver most of the reductions in CO2 emisisons required by regulations at a fraction of the cost of full electrification - a real benefit in a world of political uncertainty about the future of EV subsidies - and without having to tackle the barriers to adoption (such as range and cost) thrown up by more fully electric solutions.

What this report offers

The report offers insight into the opportunities and challenges offered by the development of 48V Power Supply Systems for automotive OEMs, established suppliers and potential new entrants.

It looks at new systems and new applications that are enabled by higher voltage power systems - and the ripple effects on electrical and electronic architectures and feature configurations that could follow.

Who buys Autelligence reports?

Currently over 250 companies have corporate or individual subscriptions to reports from Autelligence. Most reports are bought by CEOs, other C-level executives, partners, directors, vice-presidents and country managers at automotive suppliers across marketing, engineering, R&D, and purchasing functions. Subscribers also include OEMs, financial analysts and management consultants.

48V systems will get better

There is a lot of room for improvement in the technology, according to two leading engineering consultants familiar with the area:

Jason McConnell, Business Unit Director at IAV Automotive Engineering: “People are looking to integrate technologies, putting the battery, power electronics from the inverter and the DC-DC converter in one box so you've got less cabling. 48V technologies can be adopted over a large number of vehicles; there's definitely reusability and scalability in most designs.”

Tomasz Salamon, Engineering Operations Manager for Hybrid and Electric Systems at Ricardo: “Eventually we'll see more components going to 48V, which gives you smaller and more-efficient electrical components-and more power capability.”

And these benefits will be enhanced by scale effects.

Rudolf Stark, head of the Hybrid Electric Vehicle Business Unit at Continental has said that his company expects “good market penetration across all vehicle segments, from A to D.” That, he says, will “bring large quantities of the technology to market” and “ensure cost-effective production”.

Autelligence offers more than a one-off download...

If you purchase this report, we will provide complimentary access to our database of 48V Power Supply system-related announcements.

The database is regularly updated by our team.

The benefits:

  • Allows report buyers to track the development of applications and innovations in 48V Power systems through to the end of 2017
  • Allows report buyers to sort the data by model, OEM, Supplier, date of announcement, technologies involved and more to support their own analysis”

Author of this report

Peter Els has been involved in the automotive industry since 1979 when he joined Nissan South Africa's product development team as a student engineer. On qualifying, he explored all facets of the industry holding, positions in engineering, after-sales service, and marketing. Peter has held positions with OEM's such as Daimler, Fiat, Toyota, Nissan and Beijing Automotive Works. He's also been responsible for OE sales and exports at Robert Bosch South Africa. After years in an industry driven by information gathering and communication Peter began writing technical articles on various aspects of the industry and the cars it produces. Since then he has produced a broad spectrum of automotive analysis work for Autelligence and other companies such as Automotive IQ and IQPC.

Table of Contents

Chapter 1: Introduction

  • 1.1. The 42V revolution that never was
  • 1.2. What did we learn from the 42V exercise?
  • 1.3. Why 48V, and why now?

Chapter 2: The automotive industry's assessment of 48V

  • 2.1. The future of 48V: the industry's consensus view
  • 2.2. A change in consensus? Comparing 2016 vs. 2017 Autelligence survey results
    • 2.2.1. General comments
    • 2.2.2. Could 48V roll out sooner than originally anticipated?
    • 2.2.3. What is really driving 48V progress?
    • 2.2.4. Will socio-political uncertainty influence growth?
    • 2.2.5. 48V is about more than emissions: power unlocks value!
  • 2.3. Key questions about the uncertainties leading up to 2025

Chapter 3: Overview of global market drivers and restraints

  • 3.1. EV incentives: a mixed blessing for 48V MHEVs
  • 3.2. Shifting trends contribute to 48V sales
    • 3.2.1. 48V MHEVs set to outgun 12V SSVs
    • 3.2.2. Growth in the premium brand market: what is the benefit to 48V?
    • 3.2.3. Automated vehicles and 48V electrification: a match made in heaven!
  • 3.3. Global uncertainties could upset the consensus view
    • 3.3.1. Fuel is cheap, but is this likely to change?
    • 3.3.2. Politicians want to restrict diesel/ICEs
    • 3.3.3. The Trump administration seems set to trade GHGs for jobs
    • 3.3.4. The Chinese revolution: Is there room for 48V?
    • 3.3.5. The death of the 48V MHEV in India: India's future lies with EVs
  • 3.4. It all comes down to cost: what will the customer pay for 48V?
  • 3.5. Chapter 3 summary: uncertainties and forecasts

Chapter 4: Flexible 48V building blocks fit any strategy

  • 4.1. It is all about saving the planet: 48V's role in cutting emissions
    • 4.1.1. Some markets are about to run into emissions trouble
    • 4.1.2. New emissions test procedures rewrite all the rules
    • 4.1.3. No need to go HV: 48V will meet emissions targets
    • 4.1.4. Will 48V save the diesel; or replace it?
  • 4.2. Tiny engines love the 48V Powernet
    • 4.2.1. The 48V eSupercharger: the best of both worlds
    • 4.2.2. 48V torque-boost puts the fun back into driving
    • 4.2.3. Going electric stamps out parasitic losses
  • 4.3. More sizzle less steak: are premium brands selling 48V as a feature?
  • 4.4. Comfort features come standard with 48V
  • 4.5. Automated vehicles: smart cars need a lot of power
  • 4.6. Chapter 4 summary: uncertainties and forecasts

Chapter 5: OEMs show their hand

  • 5.1. Mercedes-Benz goes all out with an ISG
  • 5.2. Renault shows the way with a cost effective BSG
  • 5.3. OEMs lining up to roll out new 48V models
  • 5.4. Chapter 5 summary: uncertainties and forecasts

Chapter 6: Projects comparing 48V options: examples

  • 6.1. Diesel can work: the ADEPT project
  • 6.2. The Schaeffler High Performance 48V concept with AWD
  • 6.3. Chapter 6 summary: uncertainties and forecasts

Chapter 7: 48V - Key technologies up to 2030 and beyond

  • 7.1. The heart of 48V: batteries dictate the pace
    • 7.1.1. Are lead acid batteries still relevant?
    • 7.1.2. Li-Ion: chemistry of choice
    • 7.1.3. Can new cathode materials unlock more energy?
    • 7.1.4. Solving capacity loss in lithium-sulfur batteries
    • 7.1.5. IONICS: paving the way for the next generation
    • 7.1.6. Revolutionary solid state battery ups the ante
    • 7.1.7. A 48V battery delivers 25kW!
    • 7.1.8. Can the flowcell battery work in a car?
  • 7.2. Materials and design set to revolutionize power electronics
    • 7.2.1. New materials pave the way to higher switching frequencies
    • 7.2.2. Managing the energy flow in dual voltage systems
  • 7.3. Future of 48V rotating machine technology
  • 7.4. Back to the future with 12V MHEVs
  • 7.5. Chapter 7 summary: Uncertainties and forecasts

Chapter 8: 48V as a powerful EV - the Volabo concept

  • 8.1. A 48V motor producing 180kW!
  • 8.2. Unique controls deal with the high current
  • 8.3. Smart battery configuration provides the power
  • 8.4. What to do with transmission cables?
  • 8.5. Post MHEV: High power 48V offers impressive performance
  • 8.6. Chapter 8 summary: uncertainties and forecasts

Addendum A: 2016 vs 2017 Autelligence survey respondent demographics

Addendum B: Topology, the heart of the 48V mild hybrid

Addendum B summary: uncertainties and forecasts

Sources

Table of Figures

  • Figure 1.1: Overview of changes to emissions regulations in major markets 8
  • Figure 1.2: CO2 savings achievable through flexible 48V architectures 8
  • Figure 1.3: 48V's position on the path to zero emissions 9
  • Figure 1.4: 48V as an enabler for future electrification strategies 10
  • Figure 2.1: Consensus view of 48V trends up to 2025 11
  • Figure 2.2: Autelligence survey indicates growing optimism in the uptake of 48V 13
  • Figure 2.3: Autelligence survey results on timing for 48V-only architecture 13
  • Figure 2.4: Autelligence survey establishes factors driving 48V growth 14
  • Figure 2.5: Autelligence survey questions the effect of socio-political factors on the growth of 48V 15
  • Figure 2.6: 2017 Autelligence survey shows opinions split on the impact of incentives on sales of 48V in the US and China 15
  • Figure 2.7: Autelligence survey respondents' views on systems to benefit most from 48V 16
  • Figure 2.8: Suppliers and OEMs that could walk away as winners or losers in the 48V stakes 17
  • Figure 3.1: Breakdown of global GHG emissions by type and sector 19
  • Figure 3.2: 2016 to 2026 global total vehicle sales by region 20
  • Figure 3.3: Breakdown of powertrain market share by type and region for 2025 20
  • Figure 3.4: PHEV sales comparison 2015/2016 - highlighting the impact of incentives on sales 21
  • Figure 3.5: The impact of incentives on market share 22
  • Figure 3.6: Breakdown of vehicle sales by technology highlights SSV contribution 25
  • Figure 3.7: EU light vehicle production forecast by architecture 25
  • Figure 3.8: SSV sales by region to 2025 26
  • Figure 3.9: Premium brand vehicle sales by region to 2025 27
  • Figure 3.10: Breakdown of the automated-driving vehicle market, by level, to 2035 27
  • Figure 3.11: Oil price forecast up to 2030 28
  • Figure 3.12: What will the Indian market pay for 48V? 34
  • Figure 3.13: What will the EU customer pay for 48V? 35
  • Figure 4.1: Actual vehicle emissions plotted against regulation driven emissions targets 38
  • Figure 4.2: Quantifying the impact of switching from NEDC to WLTP 40
  • Figure 4.3: EU emissions penalties - 2015 vs. 2020 41
  • Figure 4.4: Cost/g CO2 reduction by topology 42
  • Figure 4.5: Scalable cost vs. benefit from 48V electrification 42
  • Figure 4.6: Energy recovery by vehicle segment, topology and machine power over most common driving cycles 43
  • Figure 4.7: Analysis of the BSG efficiency map 43
  • Figure 4.8: The impact of changing BSG torque on overall efficiency 44
  • Figure 4.9: Breakdown of driving modes over a Real Driving Cycle 45
  • Figure 4.10: Results of Engine Technology International's poll on the long-term viability of LDV diesels 46
  • Figure 4.11: Reduction in transient diesel fuel-consumption with an iBSG 47
  • Figure 4.12: The influence of electric assistance on BSNOx emissions 47
  • Figure 4.12: The influence of electric assistance on BSNOx emissions (continued) 48
  • Figure 4.13: 48V enables CO2 vs. NOx optimization for diesel ICE emissions 48
  • Figure 4.14: The impact of a 48V electrically heated catalyst on the warmup time 49
  • Figure 4.15: 48V eSC reduces NOx by lowering combustion temperature 49
  • Figure 4.16: Response time curve of a turbocharged engine equipped with a supplementary 48V eSC 52
  • Figure 4.17: eSupercharger sales by region to 2025 52
  • Figure 4.18: Power-on vs. power demand schematic of systems that will benefit from 48V 54
  • Figure 4.19: Time, speed and torque curves for S/G assisted acceleration from coasting mode 55
  • Figure 4.20: Comparison of current and future comfort-feature power requirements 56
  • Figure 4.21: Timeline for the roll out of automated vehicle features 57
  • Figure 4.22: ADAS and automated driving power requirements 57
  • Figure 5.1: The degree of current electrification by OEM and architecture 60
  • Figure 6.1: Schematic layout of the ADEPT system 64
  • Figure 6.2: ADEPT technologies that cut emissions to 75g/km with 70g/km in reach 65
  • Figure 6.3: 48V improves ADEPT vehicle acceleration and engine cranking-time 67
  • Figure 6.4: Schaeffler High Performance 48V AWD concept 68
  • Figure 7.1: Forecast of future battery development 70
  • Figure 7.2: Advanced Lead Acid Battery Value by Region 2016-2025 71
  • Figure 7.3: Overview of the 2016-2018 ALABC research program 72
  • Figure 7.4: Detailed comparison of common 48V battery technologies considered for the ADEPT project 74
  • Figure 7.5: 48V battery market by region 2016-2025 75
  • Figure 7.6: Comparison of key cost/performance criteria of the three most likely Lithium battery chemistries 76
  • Figure 7.7: Comparison of the energy densities of Li2CoP2O vs. conventional cathode materials 77
  • Figure 7.8: DC/DC Converter market growth to 2025 83
  • Figure 7.9: Relative cost comparison of key topologies and systems 84
  • Figure 7.10: 48V Starter-Generator market by region to 2025 85
  • Figure 7.11: 12V MHEV architecture may displace 48V on lower cost small vehicles 86
  • Figure 8.1: Advantages of the Intelligent Stator Cage Drive Motor 88
  • Figure 8.2: Advantages of the ISCAD Power Electronics 89
  • Figure 8.3: Comparison of highly parallel cell setup vs. series configuration 90
  • Figure 8.4: Simple Volabo battery construction 91
  • Figure 8.5: Volabo design improves efficiency across a wide speed/torque range 92
  • Figure 8.6: ISCAD reduces energy demands 93
  • Figure A.1: Geographical spread of respondents to Autelligence survey 94
  • Figure A.2: Autelligence survey respondent's work diversity 94
  • Figure A.3: Respondent diversity by job function 95
  • Figure A.4: Respondent diversity by level of seniority 95
  • Figure B.1: Configuration of a low-cost P0 Topology 97
  • Figure B.2: Energy recovery and torque boosting over the NEDC 98
  • Figure B.3: Torque-boosting improves overtaking acceleration where it is most needed 98
  • Figure B.4: Comparison of P0 vs. P2 kinetic energy recovery 99

Table of tables

  • Table 1.1: 12V/42V/48V Powernet system comparison 7
  • Table 3.1: EV incentives by country/region 22
  • Table 3.2: Cities and countries considering restrictions on ICE vehicles 30
  • Table 3.3 Forecasts on the impact of global uncertainties in the 48V market, with probabilities assigned 36
  • Table 4.1: Emissions, comfort and performance strategies unlocked by 48V electrification 37
  • Table 4.2: Achieving CO2 reductions by applying a system level approach to downsized engines 51
  • Table 4.3: Increased BMEP vs. downsizing potential 51
  • Table 4.4: Typical parasitic losses on a 2.0TD LDV 53
  • Table 4.5: Diverse 48V strategies differentiate premium brands 54
  • Table 4.6: Power consumption by comfort system 56
  • Table 4.7: Forecasts around future 48V strategies with probabilities assigned 59
  • Table 5.1: Overview of major OEMs' electrification activities 60
  • Table 5.2: Forecasts of OEM 48V strategies with probabilities assigned 63
  • Table 6.1: Benefits of the 48V technologies applied to the ADEPT project 66
  • Table 6.2: Forecasts on governments' impact on research projects, with probabilities assigned 69
  • Table 7.1: Significant developments taking place around Lead Acid Batteries (companies and contact details included) 72
  • Table 7.2: Significant developments taking place around Lithium-ion Battery technologies (companies and contact details included) 77
  • Table 7.3: Forecasts on the future direction of 48V E/E components with probabilities assigned 87
  • Table 8.1: Energy comparison of various battery cell configurations 90
  • Table 8.2: Forecasts on the possibility of 48V evolving into a part- or full-time EV, with probabilities assigned 93
  • Table: B.1: Benefits of differing 48V MHEV System Configurations 96
  • Table B.2: Systems powered by regen energy 99
  • Table B.3: Forecasts on the future of 48V with probabilities assigned 100
Back to Top