Cover Image
市場調查報告書

穿戴式資料分析、經營模式

Wearable Data Analytics and Business Models

出版商 ABI Research 商品編碼 588878
出版日期 內容資訊 英文 26 Pages, 7 Tables, 5 Charts
商品交期: 最快1-2個工作天內
價格
如有價格方面的疑問請按下「詢問」鍵來信查詢
Back to Top
穿戴式資料分析、經營模式 Wearable Data Analytics and Business Models
出版日期: 2017年12月06日 內容資訊: 英文 26 Pages, 7 Tables, 5 Charts
簡介

本報告提供資料分析如何提供包含穿戴式的感測器、設備的ROI給企業的相關調查,各終端用戶流通管道,地區,及各設備類型的穿戴式設備出貨量,各地區的資料、分析業務收益,各設備類型的穿戴式設備收益,市場趨勢,市場預測,及主要企業簡介等彙整。

第1章 摘要整理

第2章 主要建議

第3章 市場趨勢

  • IoT的資料分析
  • 穿戴式設備收集的資料
  • 穿戴式資料分析
  • 穿戴式資料收益化
  • 穿戴式資料的課題
  • 穿戴式資料分析怎麼變化

第4章 市場預測

  • 調查手法
  • 主要的預測結果

第5章 主要資料分析企業

  • Accenture
  • Arcadia Data
  • Augmate
  • Catapult Sports
  • Emu Analytics
  • EVO (Big Cloud Analytics)
  • Plantronics
  • PTC
  • Salesforce
  • Samsung Electronics
  • Samsung SDS
  • Sentrian
  • Snowflake
  • SOTI
  • Upskill
  • Vivametrica
目錄
Product Code: AN-2456

Data analytics is becoming more prevalent within the IoT, providing companies with actionable information based on the data that devices and sensors collect. Companies are increasingly turning to wearable devices to aid employees with their work, providing them with information and collecting data about the user. Wearable data analytics is enabling companies to gain insight into worker processes, patient vitals, and customer habits, allowing informative decisions to be made. This analyzed data is more advantageous than the raw data, which can often be overwhelming and uninformative.

This report examines how data analytics can provide companies with a further ROI from sensors and devices, including wearables. It covers data analytics in the IoT, the data that wearable devices collect and how that can be analyzed and monetized, challenges in the market, what is set to change, and key market players. Forecasts include Wearable Device Shipments by End-User Channel, Wearable Device Shipments by Region, Wearable Device Shipments by Device Type, Enterprise Wearable Device Shipments by Vertical, Data and Analytic Services Revenue by Region, and Wearable Device Revenue by Device Type.

Table of Contents

1. EXECUTIVE SUMMARY

2. KEY RECOMMENDATIONS

3. MARKET TRENDS

  • 3.1. Data Analytics in the IoT
  • 3.2. The Data that Wearable Devices Collect
  • 3.3. Wearable Data Analytics
  • 3.4. Wearable Data Monetization
  • 3.5. Wearable Data Challenges
  • 3.6. How Wearable Data Analytics Is Set to Change

4. MARKET FORECASTS

  • 4.1. Methodology
  • 4.2. Key Forecast Findings

5. KEY DATA ANALYSIS PLAYERS

  • 5.1. Accenture
  • 5.2. Arcadia Data
  • 5.3. Augmate
  • 5.4. Catapult Sports
  • 5.5. Emu Analytics
  • 5.6. EVO (Big Cloud Analytics)
  • 5.7. Plantronics
  • 5.8. PTC
  • 5.9. Salesforce
  • 5.10. Samsung Electronics
  • 5.11. Samsung SDS
  • 5.12. Sentrian
  • 5.13. Snowflake
  • 5.14. SOTI
  • 5.15. Upskill
  • 5.16. Vivametrica
Back to Top